EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Mathematics Modeling in Cancer Analysis

Download or read book Computational Mathematics Modeling in Cancer Analysis written by Wenjian Qin and published by Springer Nature. This book was released on 2023-10-07 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume LNCS 14243 constitutes the refereed proceedings of the Second International Workshop, CMMCA 2023, Held in Conjunction with MICCAI 2023, on October 8, 2023, in Vancouver, BC, Canada. The 17 full papers presented were carefully reviewed and selected from 25 submissions. The conference focuses on the discovery of cutting-edge techniques addressing trends and challenges in theoretical, computational, and applied aspects of mathematical cancer data analysis.

Book Computational Mathematics Modeling in Cancer Analysis

Download or read book Computational Mathematics Modeling in Cancer Analysis written by Wenjian Qin and published by Springer Nature. This book was released on 2022-09-22 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the First Workshop on Computational Mathematics Modeling in Cancer Analysis (CMMCA2022), held in conjunction with MICCAI 2022, in Singapore in September 2022. Due to the COVID-19 pandemic restrictions, the CMMCA2022 was held virtually. DALI 2022 accepted 15 papers from the 16 submissions that were reviewed. A major focus of CMMCA2022 is to identify new cutting-edge techniques and their applications in cancer data analysis in response to trends and challenges in theoretical, computational and applied aspects of mathematics in cancer data analysis.

Book Computational Biology Of Cancer  Lecture Notes And Mathematical Modeling

Download or read book Computational Biology Of Cancer Lecture Notes And Mathematical Modeling written by Dominik Wodarz and published by World Scientific. This book was released on 2005-01-24 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book shows how mathematical and computational models can be used to study cancer biology. It introduces the concept of mathematical modeling and then applies it to a variety of topics in cancer biology. These include aspects of cancer initiation and progression, such as the somatic evolution of cells, genetic instability, and angiogenesis. The book also discusses the use of mathematical models for the analysis of therapeutic approaches such as chemotherapy, immunotherapy, and the use of oncolytic viruses.

Book Computational Biology of Cancer

Download or read book Computational Biology of Cancer written by Dominik Wodarz and published by World Scientific. This book was released on 2005 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: - Provides an introduction to computational methods in cancer biology - Follows a multi-disciplinary approach

Book Multiscale Modeling of Cancer

Download or read book Multiscale Modeling of Cancer written by Vittorio Cristini and published by Cambridge University Press. This book was released on 2010-09-09 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modeling, analysis and simulation are set to play crucial roles in explaining tumor behavior, and the uncontrolled growth of cancer cells over multiple time and spatial scales. This book, the first to integrate state-of-the-art numerical techniques with experimental data, provides an in-depth assessment of tumor cell modeling at multiple scales. The first part of the text presents a detailed biological background with an examination of single-phase and multi-phase continuum tumor modeling, discrete cell modeling, and hybrid continuum-discrete modeling. In the final two chapters, the authors guide the reader through problem-based illustrations and case studies of brain and breast cancer, to demonstrate the future potential of modeling in cancer research. This book has wide interdisciplinary appeal and is a valuable resource for mathematical biologists, biomedical engineers and clinical cancer research communities wishing to understand this emerging field.

Book Mathematical Models of Cancer and Different Therapies

Download or read book Mathematical Models of Cancer and Different Therapies written by Regina Padmanabhan and published by Springer Nature. This book was released on 2020-10-31 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified framework for various currently available mathematical models that are used to analyze progression and regression in cancer development, and to predict its dynamics with respect to therapeutic interventions. Accurate and reliable model representations of cancer dynamics are milestones in the field of cancer research. Mathematical modeling approaches are becoming increasingly common in cancer research, as these quantitative approaches can help to validate hypotheses concerning cancer dynamics and thus elucidate the complexly interlaced mechanisms involved. Even though the related conceptual and technical information is growing at an exponential rate, the application of said information and realization of useful healthcare devices are lagging behind. In order to remedy this discrepancy, more interdisciplinary research works and course curricula need to be introduced in academic, industrial, and clinical organizations alike. To that end, this book reformulates most of the existing mathematical models as special cases of a general model, allowing readers to easily get an overall idea of cancer dynamics and its modeling. Moreover, the book will help bridge the gap between biologists and engineers, as it brings together cancer dynamics, the main steps involved in mathematical modeling, and control strategies developed for cancer management. This also allows readers in both medical and engineering fields to compare and contrast all the therapy-based models developed to date using a single source, and to identify unexplored research directions.

Book Mathematical Models in Cancer Research

Download or read book Mathematical Models in Cancer Research written by T. E. Wheldon and published by CRC Press. This book was released on 1988 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer research deals with all aspects of malignant transformation, tumour growth and the effects of treatment. Mathematical models enable quantitative representations of the changes affecting cell state and cell number. This book provides a review of the scope of mathematical modelling in cancer research, bringing together for the first time a group of related mathematical topics including multistage carcinogenesis, tumour growth kinetics, growth control, radiotherapy, chemotherapy and biological targeting in cancer treatment. Physicists and mathematicians interested in medical research, biomathematicians, biostatisticians, radiation and medical oncologists and experimental and theoretical biologists will welcome this critical review of mathematical modelling in cancer research. This book will also be of interest to clinicians, basic cancer scientists and physicists working in radiotherapy departments, and to postgraduate students on courses in oncology and subjects.

Book Mathematical and Computational Modeling

Download or read book Mathematical and Computational Modeling written by Roderick Melnik and published by John Wiley & Sons. This book was released on 2015-04-30 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-the-art achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts also features: Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, industrial, and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.

Book Introduction to Mathematical Oncology

Download or read book Introduction to Mathematical Oncology written by Yang Kuang and published by CRC Press. This book was released on 2018-09-03 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models. After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts. Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology.

Book Mathematical and Computational Oncology

Download or read book Mathematical and Computational Oncology written by George Bebis and published by Springer Nature. This book was released on 2020-12-07 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Symposium on Mathematical and Computational Oncology, ISMCO 2020, which was supposed to be held in San Diego, CA, USA, in October 2020, but was instead held virtually due to the COVID-19 pandemic. The 6 full papers and 4 short papers presented together with 1 invited talk were carefully reviewed and selected from 28 submissions. The papers are organized in topical sections named: statistical and machine learning methods for cancer research; mathematical modeling for cancer research; general cancer computational biology; and posters.

Book An Introduction to Physical Oncology

Download or read book An Introduction to Physical Oncology written by Vittorio Cristini and published by CRC Press. This book was released on 2017-06-26 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physical oncology has the potential to revolutionize cancer research and treatment. The fundamental rationale behind this approach is that physical processes, such as transport mechanisms for drug molecules within tissue and forces exchanged by cancer cells with tissue, may play an equally important role as biological processes in influencing progression and treatment outcome. This book introduces the emerging field of physical oncology to a general audience, with a focus on recent breakthroughs that help in the design and discovery of more effective cancer treatments. It describes how novel mathematical models of physical transport processes incorporate patient tissue and imaging data routinely produced in the clinic to predict the efficacy of many cancer treatment approaches, including chemotherapy and radiation therapy. By helping to identify which therapies would be most beneficial for an individual patient, and quantifying their effects prior to actual implementation in the clinic, physical oncology allows doctors to design treatment regimens customized to each patient’s clinical needs, significantly altering the current clinical approach to cancer treatment and improving the outcomes for patients.

Book Mathematical Models of Tumor Immune System Dynamics

Download or read book Mathematical Models of Tumor Immune System Dynamics written by Amina Eladdadi and published by Springer. This book was released on 2014-11-06 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in a variety of fields within mathematical and biological sciences.

Book Mathematical Models and Computer Simulations for Biomedical Applications

Download or read book Mathematical Models and Computer Simulations for Biomedical Applications written by Gabriella Bretti and published by Springer Nature. This book was released on 2023-09-17 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modelling and computer simulations are playing a crucial role in the solution of the complex problems arising in the field of biomedical sciences and provide a support to clinical and experimental practices in an interdisciplinary framework. Indeed, the development of mathematical models and efficient numerical simulation tools is of key importance when dealing with such applications. Moreover, since the parameters in biomedical models have peculiar scientific interpretations and their values are often unknown, accurate estimation techniques need to be developed for parameter identification against the measured data of observed phenomena. In the light of the new challenges brought by the biomedical applications, computational mathematics paves the way for the validation of the mathematical models and the investigation of control problems. The volume hosts high-quality selected contributions containing original research results as well as comprehensive papers and survey articles including prospective discussion focusing on some topical biomedical problems. It is addressed, but not limited to: research institutes, academia, and pharmaceutical industries.

Book Mathematical and Computational Studies on Progress  Prognosis  Prevention and Panacea of Breast Cancer

Download or read book Mathematical and Computational Studies on Progress Prognosis Prevention and Panacea of Breast Cancer written by Suhrit Dey and published by Springer Nature. This book was released on 2022-03-25 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book’s aim is to study the mathematical and computational models to analyze the progress, prognosis, prevention, and panacea of breast cancer. The book discusses application of Markov chains and transient mappings, Charlie–Simpson numerical algorithm, models represented by nonlinear reaction–diffusion-type partial differential equations, and related techniques. The book also attempts to design mathematical model of targeted strategic treatments by using Skilled Killer Drugs (SKD1 and SKD2) to suggest the improvisation of future cancer treatments. Both graduate students and researchers of computational biology and oncologists will benefit by studying this book. Researchers of cancer studies and biological sciences will also find this work helpful.

Book Optimal Control for Mathematical Models of Cancer Therapies

Download or read book Optimal Control for Mathematical Models of Cancer Therapies written by Heinz Schättler and published by Springer. This book was released on 2015-09-15 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful.

Book Modeling of Cancer Genesis and Prevention

Download or read book Modeling of Cancer Genesis and Prevention written by Nicolae Voiculetz and published by CRC Press. This book was released on 1991-02-26 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of the interaction between cancer research and mathematical methods for both investigators in the field and newcomers just entering it. The book's primary focus is on the use of computer-assisted mathematical modeling in carcinogenesis and cancer prevention. The first two chapters include a general presentation of the carcinogenesis and anticarcinogenesis molecular mechanisms, followed by a discussion of mathematical models of triggers for gene regulation. A description of the prediction of both carcinogenicity and mutagenicity using quantum mechanical, topological or physico-chemical indices is presented, as well as a discussion of the QSAR analysis of carcinogenesis-inhibiting compounds (known as blocking or suppressive agents).