EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Learning Theory and Natural Learning Systems  Making learning systems practical

Download or read book Computational Learning Theory and Natural Learning Systems Making learning systems practical written by Russell Greiner and published by MIT Press. This book was released on 1994 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the fourth and final volume of papers from a series of workshops called "Computational Learning Theory and Ǹatural' Learning Systems." The purpose of the workshops was to explore the emerging intersection of theoretical learning research and natural learning systems. The workshops drew researchers from three historically distinct styles of learning research: computational learning theory, neural networks, and machine learning (a subfield of AI). Volume I of the series introduces the general focus of the workshops. Volume II looks at specific areas of interaction between theory and experiment. Volumes III and IV focus on key areas of learning systems that have developed recently. Volume III looks at the problem of "Selecting Good Models." The present volume, Volume IV, looks at ways of "Making Learning Systems Practical." The editors divide the twenty-one contributions into four sections. The first three cover critical problem areas: 1) scaling up from small problems to realistic ones with large input dimensions, 2) increasing efficiency and robustness of learning methods, and 3) developing strategies to obtain good generalization from limited or small data samples. The fourth section discusses examples of real-world learning systems. Contributors : Klaus Abraham-Fuchs, Yasuhiro Akiba, Hussein Almuallim, Arunava Banerjee, Sanjay Bhansali, Alvis Brazma, Gustavo Deco, David Garvin, Zoubin Ghahramani, Mostefa Golea, Russell Greiner, Mehdi T. Harandi, John G. Harris, Haym Hirsh, Michael I. Jordan, Shigeo Kaneda, Marjorie Klenin, Pat Langley, Yong Liu, Patrick M. Murphy, Ralph Neuneier, E.M. Oblow, Dragan Obradovic, Michael J. Pazzani, Barak A. Pearlmutter, Nageswara S.V. Rao, Peter Rayner, Stephanie Sage, Martin F. Schlang, Bernd Schurmann, Dale Schuurmans, Leon Shklar, V. Sundareswaran, Geoffrey Towell, Johann Uebler, Lucia M. Vaina, Takefumi Yamazaki, Anthony M. Zador.

Book Computational Learning Theory and Natural Learning Systems

Download or read book Computational Learning Theory and Natural Learning Systems written by Thomas Petsche and published by . This book was released on 1997 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Algorithmic Learning Theory

Download or read book Algorithmic Learning Theory written by Sanjay Jain and published by Springer. This book was released on 2005-10-11 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 16th International Conference on Algorithmic Learning Theory, ALT 2005, held in Singapore in October 2005. The 30 revised full papers presented together with 5 invited papers and an introduction by the editors were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on kernel-based learning, bayesian and statistical models, PAilearning, query-learning, inductive inference, language learning, learning and logic, learning from expert advice, online learning, defensive forecasting, and teaching.

Book Boosting

    Book Details:
  • Author : Robert E. Schapire
  • Publisher : MIT Press
  • Release : 2014-01-10
  • ISBN : 0262526034
  • Pages : 544 pages

Download or read book Boosting written by Robert E. Schapire and published by MIT Press. This book was released on 2014-01-10 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and inaccurate ones. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate “rules of thumb.” A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.

Book Advances in Classification and Data Analysis

Download or read book Advances in Classification and Data Analysis written by Simone Borra and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection of papers presented at the biannual meeting of the Classification and Data Analysis Group of Societa Italiana di Statistica, which was held in Rome, July 5-6, 1999. From the originally submitted papers, a careful review process led to the selection of 45 papers presented in four parts as follows: CLASSIFICATION AND MULTIDIMENSIONAL SCALING Cluster analysis Discriminant analysis Proximity structures analysis and Multidimensional Scaling Genetic algorithms and neural networks MUL TIV ARIA TE DATA ANALYSIS Factorial methods Textual data analysis Regression Models for Data Analysis Nonparametric methods SPATIAL AND TIME SERIES DATA ANALYSIS Time series analysis Spatial data analysis CASE STUDIES INTERNATIONAL FEDERATION OF CLASSIFICATION SOCIETIES The International Federation of Classification Societies (IFCS) is an agency for the dissemination of technical and scientific information concerning classification and data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) from the following Scientific Societies and Groups: British Classification Society -BCS; Classification Society of North America - CSNA; Gesellschaft fUr Klassifikation - GfKI; Japanese Classification Society -JCS; Classification Group of Italian Statistical Society - CGSIS; Societe Francophone de Classification -SFC. Now the IFCS includes also the following Societies: Dutch-Belgian Classification Society - VOC; Polish Classification Society -SKAD; Associayao Portuguesa de Classificayao e Analise de Dados -CLAD; Korean Classification Society -KCS; Group-at-Large.

Book Digital Methods and Remote Sensing in Archaeology

Download or read book Digital Methods and Remote Sensing in Archaeology written by Maurizio Forte and published by Springer. This book was released on 2017-02-10 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​​This volume debuts the new scope of Remote Sensing, which was first defined as the analysis of data collected by sensors that were not in physical contact with the objects under investigation (using cameras, scanners, and radar systems operating from spaceborne or airborne platforms). A wider characterization is now possible: Remote Sensing can be any non-destructive approach to viewing the buried and nominally invisible evidence of past activity. Spaceborne and airborne sensors, now supplemented by laser scanning, are united using ground-based geophysical instruments and undersea remote sensing, as well as other non-invasive techniques such as surface collection or field-walking survey. Now, any method that enables observation of evidence on or beneath the surface of the earth, without impact on the surviving stratigraphy, is legitimately within the realm of Remote Sensing. ​The new interfaces and senses engaged in Remote Sensing appear throughout the book. On a philosophical level, this is about the landscapes and built environments that reveal history through place and time. It is about new perspectives—the views of history possible with Remote Sensing and fostered in part by immersive, interactive 3D and 4D environments discussed in this volume. These perspectives are both the result and the implementation of technological, cultural, and epistemological advances in record keeping, interpretation, and conceptualization. Methodology presented here builds on the current ease and speed in collecting data sets on the scale of the object, site, locality, and landscape. As this volume shows, many disciplines surrounding archaeology and related cultural studies are currently involved in Remote Sensing, and its relevance will only increase as the methodology expands.

Book Distributed Sensor Networks

Download or read book Distributed Sensor Networks written by S. Sitharama Iyengar and published by CRC Press. This book was released on 2004-12-29 with total page 1142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The vision of researchers to create smart environments through the deployment of thousands of sensors, each with a short range wireless communications channel and capable of detecting ambient conditions such as temperature, movement, sound, light, or the presence of certain objects is becoming a reality. With the emergence of high-speed networks an

Book

    Book Details:
  • Author :
  • Publisher : CRC Press
  • Release :
  • ISBN : 1135439621
  • Pages : 1142 pages

Download or read book written by and published by CRC Press. This book was released on with total page 1142 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Neural Information Processing Systems 12

Download or read book Advances in Neural Information Processing Systems 12 written by Sara A. Solla and published by MIT Press. This book was released on 2000 with total page 1124 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.

Book Multisensor Fusion

    Book Details:
  • Author : Anthony K. Hyder
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 9401005567
  • Pages : 929 pages

Download or read book Multisensor Fusion written by Anthony K. Hyder and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 929 pages. Available in PDF, EPUB and Kindle. Book excerpt: For some time, all branches of the military have used a wide range of sensors to provide data for many purposes, including surveillance, reconnoitring, target detection and battle damage assessment. Many nations have also attempted to utilise these sensors for civilian applications, such as crop monitoring, agricultural disease tracking, environmental diagnostics, cartography, ocean temperature profiling, urban planning, and the characterisation of the Ozone Hole above Antarctica. The recent convergence of several important technologies has made possible new, advanced, high performance, sensor based applications relying on the near-simultaneous fusion of data from an ensemble of different types of sensors. The book examines the underlying principles of sensor operation and data fusion, the techniques and technologies that enable the process, including the operation of 'fusion engines'. Fundamental theory and the enabling technologies of data fusion are presented in a systematic and accessible manner. Applications are discussed in the areas of medicine, meteorology, BDA and targeting, transportation, cartography, the environment, agriculture, and manufacturing and process control.

Book THEORY AND PRACTICE OF QUALITY ASSURANCE FOR MACHINE LEARNING SYSTEMS

Download or read book THEORY AND PRACTICE OF QUALITY ASSURANCE FOR MACHINE LEARNING SYSTEMS written by and published by Springer Nature. This book was released on 2025 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Distributed Sensor Networks  Second Edition

Download or read book Distributed Sensor Networks Second Edition written by S. Sitharama Iyengar and published by CRC Press. This book was released on 2012-09-24 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: The best-selling Distributed Sensor Networks became the definitive guide to understanding this far-reaching technology. Preserving the excellence and accessibility of its predecessor, Distributed Sensor Networks, Second Edition once again provides all the fundamentals and applications in one complete, self-contained source. Ideal as a tutorial for students or as research material for engineers, the book gives readers up-to-date, practical insight on all aspects of the field. Revised and expanded, this second edition incorporates contributions from many veterans of the DARPA ISO SENSIT program as well as new material from distinguished researchers in the field. Image and Sensor Signal Processing focuses on software issues and the history and future of sensor networks. The book also covers information fusion and power management. Readers of this book may also be interested in Distributed Sensor Networks, Second Edition: Sensor Networking and Applications (ISBN: 9781439862872).

Book Computational Learning Theory and Natural Learning Systems  Selecting good models

Download or read book Computational Learning Theory and Natural Learning Systems Selecting good models written by Stephen José Hanson and published by Bradford Books. This book was released on 1994 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume I of the series introduces the general focus of the workshops. Volume II looks at specific areas of interaction between theory and experiment. Volumes III and IV focus on key areas of learning systems that have developed recently. Volume III looks at the problem of "Selecting Good Models." The present volume, Volume IV, looks at ways of "Making Learning Systems Practical." The editors divide the twenty-one contributions into four sections. The first three cover critical problem areas: 1) scaling up from small problems to realistic ones with large input dimensions, 2) increasing efficiency and robustness of learning methods, and 3) developing strategies to obtain good generalization from limited or small data samples. The fourth section discusses examples of real-world learning systems.

Book Computational Learning Theory and Natural Learning Systems

Download or read book Computational Learning Theory and Natural Learning Systems written by Stephen José Hanson and published by Mit Press. This book was released on 1994 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: As with Volume I, this second volume represents a synthesis of issues in three historically distinct areas of learning research: computational learning theory, neural network research, and symbolic machine learning. While the first volume provided a forum for building a science of computational learning across fields, this volume attempts to define plausible areas of joint research: the contributions are concerned with finding constraints for theory while at the same time interpreting theoretic results in the context of experiments with actual learning systems. Subsequent volumes will focus on areas identified as research opportunities.Computational learning theory, neural networks, and AI machine learning appear to be disparate fields; in fact they have the same goal: to build a machine or program that can learn from its environment. Accordingly, many of the papers in this volume deal with the problem of learning from examples. In particular, they are intended to encourage discussion between those trying to build learning algorithms (for instance, algorithms addressed by learning theoretic analyses are quite different from those used by neural network or machine-learning researchers) and those trying to analyze them.The first section provides theoretical explanations for the learning systems addressed, the second section focuses on issues in model selection and inductive bias, the third section presents new learning algorithms, the fourth section explores the dynamics of learning in feedforward neural networks, and the final section focuses on the application of learning algorithms.A Bradford Book

Book Learning Systems  From Theory to Practice

Download or read book Learning Systems From Theory to Practice written by Vassil Sgurev and published by Springer. This book was released on 2018-04-05 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: By presenting the latest advances in fuzzy sets and computing with words from around the globe, this book disseminates recent innovations in advanced intelligent technologies and systems. From intelligent control and intuitionistic fuzzy quantifiers to various data science and industrial applications, it includes a wide range of valuable lessons learned and ideas for future intelligent products and systems.

Book Pattern Recognition in Practice IV  Multiple Paradigms  Comparative Studies and Hybrid Systems

Download or read book Pattern Recognition in Practice IV Multiple Paradigms Comparative Studies and Hybrid Systems written by E.S. Gelsema and published by Elsevier. This book was released on 2014-06-28 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: The era of detailed comparisons of the merits of techniques of pattern recognition and artificial intelligence and of the integration of such techniques into flexible and powerful systems has begun.So confirm the editors of this fourth volume of Pattern Recognition in Practice, in their preface to the book.The 42 quality papers are sourced from a broad range of international specialists involved in developing pattern recognition methodologies and those using pattern recognition techniques in their professional work. The publication is divided into six sections: Pattern Recognition, Signal and Image Processing, Probabilistic Reasoning, Neural Networks, Comparative Studies, and Hybrid Systems, giving prospective users a feeling for the applicability of the various methods in their particular field of specialization.

Book Intelligent Systems Report

Download or read book Intelligent Systems Report written by and published by . This book was released on 1998 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: