Download or read book Computational and Methodological Statistics and Biostatistics written by Andriëtte Bekker and published by Springer Nature. This book was released on 2020-08-10 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the statistical domain, certain topics have received considerable attention during the last decade or so, necessitated by the growth and evolution of data and theoretical challenges. This growth has invariably been accompanied by computational advancement, which has presented end users as well as researchers with the necessary opportunities to handle data and implement modelling solutions for statistical purposes. Showcasing the interplay among a variety of disciplines, this book offers pioneering theoretical and applied solutions to practice-oriented problems. As a carefully curated collection of prominent international thought leaders, it fosters collaboration between statisticians and biostatisticians and provides an array of thought processes and tools to its readers. The book thereby creates an understanding and appreciation of recent developments as well as an implementation of these contributions within the broader framework of both academia and industry. Computational and Methodological Statistics and Biostatistics is composed of three main themes: • Recent developments in theory and applications of statistical distributions;• Recent developments in supervised and unsupervised modelling;• Recent developments in biostatistics; and also features programming code and accompanying algorithms to enable readers to replicate and implement methodologies. Therefore, this monograph provides a concise point of reference for a variety of current trends and topics within the statistical domain. With interdisciplinary appeal, it will be useful to researchers, graduate students, and practitioners in statistics, biostatistics, clinical methodology, geology, data science, and actuarial science, amongst others.
Download or read book Testing Statistical Hypotheses with Given Reliability written by Kartlos Joseph Kachiashvili and published by Cambridge Scholars Publishing. This book was released on 2023-06-02 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to the branch of statistical science which pertains to the theory of hypothesis testing. This involves deciding on the plausibility of two or more hypothetical models based on some data. This work will be both interesting and useful for professional and beginner researchers and practitioners of many fields, who are interested in the theoretical and practical issues of the direction of mathematical statistics, namely, in statistical hypothesis testing. It will also be very useful for specialists of different fields for solving suitable problems at the appropriate level, as the book discusses in detail many important practical problems and provides detailed algorithms for their solutions.
Download or read book Innovations in Multivariate Statistical Modeling written by Andriëtte Bekker and published by Springer Nature. This book was released on 2022-12-15 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate statistical analysis has undergone a rich and varied evolution during the latter half of the 20th century. Academics and practitioners have produced much literature with diverse interests and with varying multidisciplinary knowledge on different topics within the multivariate domain. Due to multivariate algebra being of sustained interest and being a continuously developing field, its appeal breaches laterally across multiple disciplines to act as a catalyst for contemporary advances, with its core inferential genesis remaining in that of statistics. It is exactly this varied evolution caused by an influx in data production, diffusion, and understanding in scientific fields that has blurred many lines between disciplines. The cross-pollination between statistics and biology, engineering, medical science, computer science, and even art, has accelerated the vast amount of questions that statistical methodology has to answer and report on. These questions are often multivariate in nature, hoping to elucidate uncertainty on more than one aspect at the same time, and it is here where statistical thinking merges mathematical design with real life interpretation for understanding this uncertainty. Statistical advances benefit from these algebraic inventions and expansions in the multivariate paradigm. This contributed volume aims to usher novel research emanating from a multivariate statistical foundation into the spotlight, with particular significance in multidisciplinary settings. The overarching spirit of this volume is to highlight current trends, stimulate a focus on, and connect multidisciplinary dots from and within multivariate statistical analysis. Guided by these thoughts, a collection of research at the forefront of multivariate statistical thinking is presented here which has been authored by globally recognized subject matter experts.
Download or read book Flexible Nonparametric Curve Estimation written by Hassan Doosti and published by Springer Nature. This book was released on with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computational Intelligence Methods for Bioinformatics and Biostatistics written by Andrea Bracciali and published by Springer. This book was released on 2017-10-14 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 13th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2016, held in Stirling, UK, in September 2016. The 19 revised full papers and 6 keynotes abstracts presented were carefully reviewed and selected from 61 submissions. The papers deal with the application of computational intelligence to open problems in bioinformatics, biostatistics, systems and synthetic biology, medicalinformatics, computational approaches to life sciences in general
Download or read book Model Assisted Bayesian Designs for Dose Finding and Optimization written by Ying Yuan and published by CRC Press. This book was released on 2022-11-11 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian adaptive designs provide a critical approach to improve the efficiency and success of drug development that has been embraced by the US Food and Drug Administration (FDA). This is particularly important for early phase trials as they form the basis for the development and success of subsequent phase II and III trials. The objective of this book is to describe the state-of-the-art model-assisted designs to facilitate and accelerate the use of novel adaptive designs for early phase clinical trials. Model-assisted designs possess avant-garde features where superiority meets simplicity. Model-assisted designs enjoy exceptional performance comparable to more complicated model-based adaptive designs, yet their decision rules often can be pre-tabulated and included in the protocol—making implementation as simple as conventional algorithm-based designs. An example is the Bayesian optimal interval (BOIN) design, the first dose-finding design to receive the fit-for-purpose designation from the FDA. This designation underscores the regulatory agency's support of the use of the novel adaptive design to improve drug development. Features Represents the first book to provide comprehensive coverage of model-assisted designs for various types of dose-finding and optimization clinical trials Describes the up-to-date theory and practice for model-assisted designs Presents many practical challenges, issues, and solutions arising from early-phase clinical trials Illustrates with many real trial applications Offers numerous tips and guidance on designing dose finding and optimization trials Provides step-by-step illustrations of using software to design trials Develops a companion website (www.trialdesign.org) to provide freely available, easy-to-use software to assist learning and implementing model-assisted designs Written by internationally recognized research leaders who pioneered model-assisted designs from the University of Texas MD Anderson Cancer Center, this book shows how model-assisted designs can greatly improve the efficiency and simplify the design, conduct, and optimization of early-phase dose-finding trials. It should therefore be a very useful practical reference for biostatisticians, clinicians working in clinical trials, and drug regulatory professionals, as well as graduate students of biostatistics. Novel model-assisted designs showcase the new KISS principle: Keep it simple and smart!
Download or read book Model Systems in Biology written by Georg Striedter and published by MIT Press. This book was released on 2022-08-23 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: How biomedical research using various animal species and in vitro cellular systems has resulted in both major successes and translational failure. In Model Systems in Biology, comparative neurobiologist Georg Striedter examines how biomedical researchers have used animal species and in vitro cellular systems to understand and develop treatments for human diseases ranging from cancer and polio to Alzheimer’s disease and schizophrenia. Although there have been some major successes, much of this “translational” research on model systems has failed to generalize to humans. Striedter explores the history of such research, focusing on the models used and considering the question of model selection from a variety of perspectives—the philosophical, the historical, and that of practicing biologists. Striedter reviews some philosophical concepts and ethical issues, including concerns over animal suffering and the compromises that result. He traces the history of the most widely used animal and in vitro models, describing how they compete with one another in a changing ecosystem of models. He examines how therapies for bacterial and viral infections, cancer, cardiovascular diseases, and neurological disorders have been developed using animal and cell culture models—and how research into these diseases has both taken advantage of and been hindered by model system differences. Finally, Striedter argues for a “big tent” biology, in which a diverse set of models and research strategies can coexist productively.
Download or read book From Finite Sample to Asymptotic Methods in Statistics written by Pranab K. Sen and published by Cambridge University Press. This book was released on 2010 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad view of exact statistical inference and the development of asymptotic statistical inference.
Download or read book Source tracking molecular epidemiology and antigenic diversity of SARS CoV 2 infections causing coronavirus disease 2019 COVID 19 written by Charles A. Narh and published by Frontiers Media SA. This book was released on 2022-11-16 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistical and Computational Methods in Brain Image Analysis written by Moo K. Chung and published by CRC Press. This book was released on 2013-07-23 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The massive amount of nonstandard high-dimensional brain imaging data being generated is often difficult to analyze using current techniques. This challenge in brain image analysis requires new computational approaches and solutions. But none of the research papers or books in the field describe the quantitative techniques with detailed illustrations of actual imaging data and computer codes. Using MATLAB® and case study data sets, Statistical and Computational Methods in Brain Image Analysis is the first book to explicitly explain how to perform statistical analysis on brain imaging data. The book focuses on methodological issues in analyzing structural brain imaging modalities such as MRI and DTI. Real imaging applications and examples elucidate the concepts and methods. In addition, most of the brain imaging data sets and MATLAB codes are available on the author’s website. By supplying the data and codes, this book enables researchers to start their statistical analyses immediately. Also suitable for graduate students, it provides an understanding of the various statistical and computational methodologies used in the field as well as important and technically challenging topics.
Download or read book Applied Statistical Methods written by David D. Hanagal and published by Springer Nature. This book was released on 2022-04-13 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects select contributions presented at the International Conference on Importance of Statistics in Global Emerging (ISGES 2020) held at the Department of Mathematics and Statistics, University of Pune, Maharashtra, India, from 2–4 January 2020. It discusses recent developments in several areas of statistics with applications of a wide range of key topics, including small area estimation techniques, Bayesian models for small areas, ranked set sampling, fuzzy supply chain, probabilistic supply chain models, dynamic Gaussian process models, grey relational analysis and multi-item inventory models, and more. The possible use of other models, including generalized Lindley shared frailty models, Benktander Gibrat risk model, decision-consistent randomization method for SMART designs and different reliability models are also discussed. This book includes detailed worked examples and case studies that illustrate the applications of recently developed statistical methods, making it a valuable resource for applied statisticians, students, research project leaders and practitioners from various marginal disciplines and interdisciplinary research.
Download or read book Statistical Modeling for Degradation Data written by Ding-Geng (Din) Chen and published by Springer. This book was released on 2017-08-31 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.
Download or read book Statistical Regression Modeling with R written by Ding-Geng (Din) Chen and published by Springer Nature. This book was released on 2021-04-08 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.
Download or read book Introductory Statistics with R written by Peter Dalgaard and published by Springer Science & Business Media. This book was released on 2008-06-27 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.
Download or read book Information Theory and Statistical Learning written by Frank Emmert-Streib and published by Springer Science & Business Media. This book was released on 2009 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.
Download or read book Medical Biostatistics for Complex Diseases written by Frank Emmert-Streib and published by John Wiley & Sons. This book was released on 2010-03-30 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of highly valuable statistical and computational approaches designed for developing powerful methods to analyze large-scale high-throughput data derived from studies of complex diseases. Such diseases include cancer and cardiovascular disease, and constitute the major health challenges in industrialized countries. They are characterized by the systems properties of gene networks and their interrelations, instead of individual genes, whose malfunctioning manifests in pathological phenotypes, thus making the analysis of the resulting large data sets particularly challenging. This is why novel approaches are needed to tackle this problem efficiently on a systems level. Written by computational biologists and biostatisticians, this book is an invaluable resource for a large number of researchers working on basic but also applied aspects of biomedical data analysis emphasizing the pathway level.
Download or read book Statistical Testing Strategies in the Health Sciences written by Albert Vexler and published by CRC Press. This book was released on 2017-12-19 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Testing Strategies in the Health Sciences provides a compendium of statistical approaches for decision making, ranging from graphical methods and classical procedures through computationally intensive bootstrap strategies to advanced empirical likelihood techniques. It bridges the gap between theoretical statistical methods and practical procedures applied to the planning and analysis of health-related experiments. The book is organized primarily based on the type of questions to be answered by inference procedures or according to the general type of mathematical derivation. It establishes the theoretical framework for each method, with a substantial amount of chapter notes included for additional reference. It then focuses on the practical application for each concept, providing real-world examples that can be easily implemented using corresponding statistical software code in R and SAS. The book also explains the basic elements and methods for constructing correct and powerful statistical decision-making processes to be adapted for complex statistical applications. With techniques spanning robust statistical methods to more computationally intensive approaches, this book shows how to apply correct and efficient testing mechanisms to various problems encountered in medical and epidemiological studies, including clinical trials. Theoretical statisticians, medical researchers, and other practitioners in epidemiology and clinical research will appreciate the book’s novel theoretical and applied results. The book is also suitable for graduate students in biostatistics, epidemiology, health-related sciences, and areas pertaining to formal decision-making mechanisms.