Download or read book Spherical Harmonics and Approximations on the Unit Sphere An Introduction written by Kendall Atkinson and published by Springer Science & Business Media. This book was released on 2012-02-17 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes provide an introduction to the theory of spherical harmonics in an arbitrary dimension as well as an overview of classical and recent results on some aspects of the approximation of functions by spherical polynomials and numerical integration over the unit sphere. The notes are intended for graduate students in the mathematical sciences and researchers who are interested in solving problems involving partial differential and integral equations on the unit sphere, especially on the unit sphere in three-dimensional Euclidean space. Some related work for approximation on the unit disk in the plane is also briefly discussed, with results being generalizable to the unit ball in more dimensions.
Download or read book Computation of Spherical Harmonics and Approximation by Spherical Harmonic Expansions written by W. Freeden and published by . This book was released on 1985 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Approximation Theory and Harmonic Analysis on Spheres and Balls written by Feng Dai and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.
Download or read book Harmonic Function Theory written by Sheldon Axler and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about harmonic functions in Euclidean space. This new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bochers Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package supplements the text for readers who wish to explore harmonic function theory on a computer.
Download or read book Ellipsoidal Harmonics written by George Dassios and published by Cambridge University Press. This book was released on 2012-07-12 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: The sphere is what might be called a perfect shape. Unfortunately nature is imperfect and many bodies are better represented by an ellipsoid. The theory of ellipsoidal harmonics, originated in the nineteenth century, could only be seriously applied with the kind of computational power available in recent years. This, therefore, is the first book devoted to ellipsoidal harmonics. Topics are drawn from geometry, physics, biosciences and inverse problems. It contains classical results as well as new material, including ellipsoidal bi-harmonic functions, the theory of images in ellipsoidal geometry and vector surface ellipsoidal harmonics, which exhibit an interesting analytical structure. Extended appendices provide everything one needs to solve formally boundary value problems. End-of-chapter problems complement the theory and test the reader's understanding. The book serves as a comprehensive reference for applied mathematicians, physicists, engineers and for anyone who needs to know the current state of the art in this fascinating subject.
Download or read book Handbook of Geomathematics written by Amir Z. Averbuch and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Gratings Theory and Numeric Applications written by and published by Popov, Institut Fresnel. This book was released on with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Spectral Methods written by Jie Shen and published by Springer Science & Business Media. This book was released on 2011-08-25 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Download or read book Spherical Functions of Mathematical Geosciences written by Willi Freeden and published by Springer Nature. This book was released on 2022 with total page 729 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an enlarged second edition of a monograph published in the Springer AGEM2-Series, 2009. It presents, in a consistent and unified overview, a setup of the theory of spherical functions of mathematical (geo-)sciences. The content shows a twofold transition: First, the natural transition from scalar to vectorial and tensorial theory of spherical harmonics is given in a coordinate-free context, based on variants of the addition theorem, Funk-Hecke formulas, and Helmholtz as well as Hardy-Hodge decompositions. Second, the canonical transition from spherical harmonics via zonal (kernel) functions to the Dirac kernel is given in close orientation to an uncertainty principle classifying the space/frequency (momentum) behavior of the functions for purposes of data analysis and (geo-)application. The whole palette of spherical functions is collected in a well-structured form for modeling and simulating the phenomena and processes occurring in the Earth's system. The result is a work which, while reflecting the present state of knowledge in a time-related manner, claims to be of largely timeless significance in (geo-)mathematical research and teaching.
Download or read book Face Processing Advanced Modeling and Methods written by Wenyi Zhao and published by Elsevier. This book was released on 2011-07-28 with total page 755 pages. Available in PDF, EPUB and Kindle. Book excerpt: Major strides have been made in face processing in the last ten years due to the fast growing need for security in various locations around the globe. A human eye can discern the details of a specific face with relative ease. It is this level of detail that researchers are striving to create with ever evolving computer technologies that will become our perfect mechanical eyes. The difficulty that confronts researchers stems from turning a 3D object into a 2D image. That subject is covered in depth from several different perspectives in this volume. Face Processing: Advanced Modeling and Methods begins with a comprehensive introductory chapter for those who are new to the field. A compendium of articles follows that is divided into three sections. The first covers basic aspects of face processing from human to computer. The second deals with face modeling from computational and physiological points of view. The third tackles the advanced methods, which include illumination, pose, expression, and more. Editors Zhao and Chellappa have compiled a concise and necessary text for industrial research scientists, students, and professionals working in the area of image and signal processing. - Contributions from over 35 leading experts in face detection, recognition and image processing - Over 150 informative images with 16 images in FULL COLOR illustrate and offer insight into the most up-to-date advanced face processing methods and techniques - Extensive detail makes this a need-to-own book for all involved with image and signal processing
Download or read book Hyperspherical Harmonics written by John S. Avery and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: where d 3 3)2 ( L x - -- i3x j3x j i i>j Thus the Gegenbauer polynomials play a role in the theory of hyper spherical harmonics which is analogous to the role played by Legendre polynomials in the familiar theory of 3-dimensional spherical harmonics; and when d = 3, the Gegenbauer polynomials reduce to Legendre polynomials. The familiar sum rule, in 'lrlhich a sum of spherical harmonics is expressed as a Legendre polynomial, also has a d-dimensional generalization, in which a sum of hyper spherical harmonics is expressed as a Gegenbauer polynomial (equation (3-27»: The hyper spherical harmonics which appear in this sum rule are eigenfunctions of the generalized angular monentum 2 operator A , chosen in such a way as to fulfil the orthonormality relation: VIe are all familiar with the fact that a plane wave can be expanded in terms of spherical Bessel functions and either Legendre polynomials or spherical harmonics in a 3-dimensional space. Similarly, one finds that a d-dimensional plane wave can be expanded in terms of HYPERSPHERICAL HARMONICS xii "hyperspherical Bessel functions" and either Gegenbauer polynomials or else hyperspherical harmonics (equations ( 4 - 27) and ( 4 - 30) ) : 00 ik·x e = (d-4)!!A~oiA(d+2A-2)j~(kr)C~(~k'~) 00 (d-2)!!I(0) 2: iAj~(kr) 2:Y~ (["2k)Y (["2) A A=O ). l). l)J where I(O) is the total solid angle. This expansion of a d-dimensional plane wave is useful when we wish to calculate Fourier transforms in a d-dimensional space.
Download or read book Handbook of Mathematical Geodesy written by Willi Freeden and published by Birkhäuser. This book was released on 2018-06-11 with total page 938 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
Download or read book Chebyshev and Fourier Spectral Methods written by John P. Boyd and published by Courier Corporation. This book was released on 2001-12-03 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Download or read book Fundamentals of Spherical Array Processing written by Boaz Rafaely and published by Springer. This book was released on 2018-09-27 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays, and was written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications. The new edition includes additions and modifications, and references supplementary Matlab code to provide the reader with a straightforward start for own implementations. The book is also accompanied by a Matlab manual, which explains how to implement the examples and simulations presented in the book. The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. In turn, the third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters highlight various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, including those that achieve maximum directivity and maximum robustness are developed, along with the Dolph–Chebyshev beamformer. The final chapter discusses more advanced beamformers, such as MVDR (minimum variance distortionless response) and LCMV (linearly constrained minimum variance) types, which are tailored to the measured sound field. Mathworks kindly distributes the Matlab sources for this book on https://www.mathworks.com/matlabcentral/fileexchange/68655-fundamentals-of-spherical-array-processing.
Download or read book Angular Momentum in Quantum Mechanics written by A. R. Edmonds and published by Princeton University Press. This book was released on 2016-08-10 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise introduction to the angular momentum, one of the most fundamental quantities in all of quantum mechanics. Beginning with the quantization of angular momentum, spin angular momentum, and the orbital angular momentum, the author goes on to discuss the Clebsch-Gordan coefficients for a two-component system. After developing the necessary mathematics, specifically spherical tensors and tensor operators, the author then investigates the 3-j, 6-j, and 9-j symbols. Throughout, the author provides practical applications to atomic, molecular, and nuclear physics. These include partial-wave expansions, the emission and absorption of particles, the proton and electron quadrupole moment, matrix element calculation in practice, and the properties of the symmetrical top molecule.
Download or read book Fast Multipole Methods for the Helmholtz Equation in Three Dimensions written by Nail A Gumerov and published by Elsevier. This book was released on 2005-01-27 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume in the Elsevier Series in Electromagnetism presents a detailed, in-depth and self-contained treatment of the Fast Multipole Method and its applications to the solution of the Helmholtz equation in three dimensions. The Fast Multipole Method was pioneered by Rokhlin and Greengard in 1987 and has enjoyed a dramatic development and recognition during the past two decades. This method has been described as one of the best 10 algorithms of the 20th century. Thus, it is becoming increasingly important to give a detailed exposition of the Fast Multipole Method that will be accessible to a broad audience of researchers. This is exactly what the authors of this book have accomplished. For this reason, it will be a valuable reference for a broad audience of engineers, physicists and applied mathematicians. - The Only book that provides comprehensive coverage of this topic in one location - Presents a review of the basic theory of expansions of the Helmholtz equation solutions - Comprehensive description of both mathematical and practical aspects of the fast multipole method and it's applications to issues described by the Helmholtz equation
Download or read book Quantum Electrodynamics written by V B Berestetskii and published by Elsevier. This book was released on 2012-12-02 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several significant additions have been made to the second edition, including the operator method of calculating the bremsstrahlung cross-section, the calcualtion of the probabilities of photon-induced pair production and photon decay in a magnetic field, the asymptotic form of the scattering amplitudes at high energies, inelastic scattering of electrons by hadrons, and the transformation of electron-positron pairs into hadrons.