EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Future Grid Scale Energy Storage Solutions

Download or read book Future Grid Scale Energy Storage Solutions written by Ahmad Arabkoohsar and published by Elsevier. This book was released on 2023-03-25 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a detailed understanding of why heat and electricity energy storage technologies have developed so rapidly, Future Grid-Scale Energy Storage Solutions: Mechanical and Chemical Technologies and Principles presents the required fundamentals for techno-economic and environmental analysis of various grid-scale energy storage technologies. Through a consistent framework, each chapter outlines state-of-the-art advances, benefits and challenges, energy and exergy analyses models of these technologies, as well as an elaboration on their performance under dynamic and off-design operating conditions. Chapters include a case study analysis section, giving a detailed understanding of the systems’ thermodynamics and economic and environmental performance in real operational conditions, and wrap-up with a discussion of the future prospects of these technologies from commercial and research perspectives. This book is a highly beneficial reference for researchers and scientists dealing with grid-scale energy storage systems, as a single comprehensive book providing the information and fundamentals required to do modeling, analysis, and/or feasibility studies of such systems. Features all the major mechanical and chemical energy storage systems, including electricity and thermal energy storage methods Includes step-by-step energy and exergy modeling, including off-design performance modeling Provides future perspectives for technologies, describing how they will contribute to the future smart energy systems

Book Modeling of Compressed Air Energy Storage for Power System Performance Studies

Download or read book Modeling of Compressed Air Energy Storage for Power System Performance Studies written by Ivan Calero and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In the effective integration of large renewable generation for grid scale applications, pumped-storage hydro and Compressed Air Energy Storage (CAES) are currently economically and technically feasible alternatives to properly manage the intrinsic intermittency of energy sources such as wind or solar, with CAES being less restrictive in terms of its location. Furthermore, the relative fast response, and the possibility of physically decoupling the charging and discharging drive trains interfacing the grid through synchronous machines make CAES a suitable asset to provide ancillary services in addition to arbitrate, such as black start, spinning reserve, frequency regulation, and/or voltage regulation. Nevertheless, although the economic value of CAES having multiple stream revenues has been studied in the context of planning and operation of power systems, the actual impact of CAES facilities on the electrical grids have not been properly addressed in the literature, in part due to the lack of suitable models. The existing CAES models proposed for power system studies fail to represent the dynamics, nonlinear relations, and physical restrictions of the main mechanical subsystems, by proposing simplifications that result in unrealistic dynamic responses and operating points when considering the entire CAES operating range, as is required in most ancillary services or during grid disturbances. Furthermore, the detail of these models and the controls used are inconsistent with the state-of-the-art modeling of other storage technologies such as batteries and flywheels. Hence, in order to bridge the gap in CAES modeling and control, this thesis propose a comprehensive physically-based dynamic mathematical model of a diabatic CAES system, considering two independent synchronous machines as interface with the grid, which allows simultaneous charging and discharging of the cavern, such as the recently inaugurated 1.75 MW CAES plant in Goderich, Ontario. Detailed and simplified models are proposed based on the configuration of the Huntorf plant, in Germany, which is one of the only two existing large CAES facilities currently operating in the world. The system modeled comprises a multi-stage compressor with intercoolers and aftercooler, driven by a synchronous motor in the charging stage, an underground cavern as storage reservoir, a multi-stage expander with a recuperator and reheater between stages, and a synchronous generator in discharging mode, such as the aforementioned small CAES Ontario plant. The proposed thermodynamic-based dynamic models of the compressors and expanders allow calculating internal system variables, such as pressures, temperatures and power, some of which are used as controllable variables. Furthermore, different approximations to model the nonlinear relations between mass flow rate, pressure ratio, and rotor speed in the CAES compressors and expanders, determined by so called "maps", are proposed based on Neural Networks and physically-based nonlinear functions; these constrain the operation of the turbomachinery, but are usually ignored in existing models. A control strategy for active and reactive power of the CAES system is also proposed. The active power controller allows primary and secondary frequency regulation provision by the turbine and compressor. Special controllers are proposed to restrict the charging and discharging power of the turbine and compressor, to avoid pressure ratios that violate the restriction imposed by the cavern pressure. A surge detection controller for the compressor, and a controller that regulates the inlet temperature at each expansion stage are also presented, and these controls are complemented by a state of charge logic controller that shuts down the compressor or turbine when the cavern is fully charged or runs out of air, respectively. A coordinated droop-based reactive power control is also proposed for the parallel operation of the two synchronous machines, which is used to provide voltage regulation assuming both machines operate synchronized with grid. Finally, the implementation of a block-diagram based CAES model for transient stability studies in the DSATool's TSAT® software is presented, based on a generic model architecture of the different CAES system's components and their interrelations. The performance of the proposed models, with different levels of detail, are examined in various electrical system studies. First, the potential of a CAES system to provide primary and secondary frequency regulation in a test power system with high penetration of wind generation is evaluated in Simulink®, where the proposed CAES models are also compared with existing models. The voltage regulation, oscillation damping capability, and frequency and transient stability impact of CAES are also studied in a modified WSCC 9-bus test system using TSAT®. It is demonstrated that CAES is more effective than equivalent gas turbines to regulate frequency and voltage and damp low frequency oscillations, with the simultaneous charging and discharging operation significantly reducing the frequency deviation of the system in the case of large power variations in a wind farm. Furthermore, the effects on the overall frequency regulation performance of incorporating detailed models for some of the CAES components, such as expansion air valve, compressor and turbine maps and associated controls is also assessed, demonstrating how modeling these sub systems restricts the CAES response, especially in charging mode. Finally, the effect of the stage of charge control on the frequency stability of the system for different cavern sizes is investigated, concluding that if the power rating of the CAES system is large enough, small cavern sizes may not allow proper provision of frequency regulation.

Book Steady State and Time Dependent Compressed Air Energy Storage Model Validated with Huntorf Operational Data and Investigation of Hydrogen Options for a Sustainable Energy Supply

Download or read book Steady State and Time Dependent Compressed Air Energy Storage Model Validated with Huntorf Operational Data and Investigation of Hydrogen Options for a Sustainable Energy Supply written by Friederike Kaiser and published by Cuvillier Verlag. This book was released on 2020-12-17 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind power and photovoltaic energy play a significant role in sustainable energy systems. However, these two renewable energy sources do not generate electrical energy on demand and are subject to natural fluctuations. Thus, the need for compensatory measures arises. Compressed air energy storage power plants (CAES) are a possible solution to providing negative and positive control energy in the electric grid. However, in contrast to other energy storage devices such as pumped hydro energy storage or batteries, the storage medium compressed air hardly contains any energy (or more precisely: enthalpy). Yet, compressed air storage allows the operation of highly efficient gas turbines, which are not only particularly fast available but also achieve better efficiency than combined cycle power plants used today, as illustrated by the example of the modern gas and steam power plant Irsching with ηtc = 60%from 2011 compared to the 20 years older McIntosh CAES with ηtc = 82.4 %. In this thesis, the calculation methods for the thermodynamics of the CAES process are presented and validated by measured data from the operations of the CAES power plant Huntorf. Both the steady state and the dynamic (time-dependent) analyses of the process take place. The characteristic value efficiency is discussed in detail, since numerous different interpretations for CAES exist in the literature. A new calculation method for the electric energy storage efficiency is presented, and a method for the calculation of an economically equivalent electricity storage efficiency is developed. Consideration is given to the transformation of the CAES process into a hydrogen-driven and, thus, greenhouse gas-free process. Finally, a model CAES system is tested in a 100 % renewable model environment. Consequently, it can be stated that in the steady-state thermodynamic calculation in particular, the consideration of realistic isentropic efficiencies of compressors and turbines is essential to correctly estimate the characteristic values of the process. Furthermore, a steadystate view should always be accompanied by dynamic considerations, since some process characteristics are always time-dependent. The simulation shows that by mapping transient operating conditions, the overall efficiency of the system must be corrected downwards. Nevertheless, in the model environment of a 100 % renewable energy system, it has been shown that a CAES is a useful addition that can provide long-term energy storage.

Book Compressed Air Energy Storage

Download or read book Compressed Air Energy Storage written by David S-K. Ting and published by IET. This book was released on 2021-10-29 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic overview of the state of Compressed Air Energy Storage (CAES) technology, covering the key components and principal types of systems in the order of technical maturity: diabatic, adiabatic, and isothermal. Existing major systems and prototypes and economics are also addressed.

Book Gravity Energy Storage

Download or read book Gravity Energy Storage written by Asmae Berrada and published by Elsevier. This book was released on 2019-05-21 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gravity Energy Storage provides a comprehensive analysis of a novel energy storage system that is based on the working principle of well-established, pumped hydro energy storage, but that also recognizes the differences and benefits of the new gravity system. This book provides coverage of the development, feasibility, design, performance, operation, and economics associated with the implementation of such storage technology. In addition, a number of modeling approaches are proposed as a solution to various difficulties, such as proper sizing, application, value and optimal design of the system. The book includes both technical and economic aspects to guide the realization of this storage system in the right direction. Finally, political considerations and barriers are addressed to complement this work. Discusses the feasibility of gravity energy storage technology Analyzes the storage system by modelling various system components Uniquely discusses the characteristics of this technology, giving consideration to its use as an attractive solution to the integration of large-scale, intermittent renewable energy

Book New Development of Underground Energy Storage Using Mine Space

Download or read book New Development of Underground Energy Storage Using Mine Space written by Jinyang Fan and published by Frontiers Media SA. This book was released on 2022-09-30 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Compressed Air Energy Storage in Salt Caverns

Download or read book Compressed Air Energy Storage in Salt Caverns written by Jai Duhan and published by . This book was released on 2018 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: As agreed in the Paris Agreement, Canada is committed to combat climate change through reducing greenhouse gas (GHG) emissions and keeping the temperature rise well below 2ʻ C above pre-industrial levels. One of the ways to achieve this goal is through replacing high GHG emitting electricity sources with renewables energy, such as wind and solar energy. However, due to their intermittent nature, wind and solar must be paired with energy storage to be a reliable source of electricity. Compressed air energy storage (CAES) in salt caverns is a well-demonstrated and effective grid-scale energy storage technology that can support large-scale integration of renewables. This thesis addresses on three major aspects of implementing CAES in Canada: I) geomechanical design workflow, II) CAES siting in salt caverns across Canada: a geomechanics perspective, and III) potential of deep brine disposal in southwestern Ontario. Part I of the thesis discusses the geomechanical design workflow for CAES in salt caverns. The workflow includes tasks and design decisions that are executed from a CAES project's pre-feasibility period to end of operation period. The major sections of the workflow include geology, data collection and mechanical earth model, constitutive model: creep, geomechanical issues and cavern design decisions, and monitoring. The goal of this section is to identify and investigate high-level geological engineering tasks that should be considered when designing a salt cavern for CAES. Part II of the thesis entails a comprehensive study on the siting of CAES plants in salt caverns across Canada. The objective of the study was to develop an evaluation methodology and use it to determine suitable sites for CAES based on geology, renewable energy potential, energy demand, and existing infrastructure. Multi-criteria analysis was utilized as a tool to compare and evaluate sites. Six criteria are used in the evaluation framework: 1) depth to salt strata, 2) salt strata thickness, 3) renewable energy potential, 4) energy demand, 5) proximity to existing natural gas infrastructure, and 6) proximity to existing electrical infrastructure. The study will be useful to the government in developing energy policies, drafting regulations, and utilized by the industry in deciding the location for front-end engineering and design (FEED) studies. Part III of the thesis comprises of a study on the potential of deep brine disposal in southwestern Ontario. The aim of the study was to develop an evaluation methodology and investigate suitable sites for brine disposal in southwestern Ontario based on geological, geomechanical, and petrophysical parameters. A multi-criteria analysis evaluation system was developed based on relevant disposal parameters and applied to sites throughout southwestern Ontario. Criteria used in the study include permeability, porosity, depth, thickness, disposal formation lithology, and caprock lithology. The study will benefit industrial and academic readers to understand the parameters required for deep brine disposal and appreciate the availability of suitable locations for disposal in southwestern Ontario.

Book Extensible Modeling of Compressed Air Energy Storage Systems

Download or read book Extensible Modeling of Compressed Air Energy Storage Systems written by Siddharth Atul Kakodkar and published by . This book was released on 2018 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a growing number of renewable energy sources that can supply power to the electrical grid. These renewable sources of energy are intermittent in nature and therefore the transition from using fossil fuels to green renewables requires the use of energy storage technologies to maintain and regulate a reliable supply of electricity. Energy storage technologies play a key role in allowing energy providers to provide a steady supply of electricity by balancing the fluctuations caused by sources of renewable energy. Compressed Air Energy Storage (CAES) is a promising utility scale energy storage technology that is suitable for long-duration energy storage and can be used to integrate renewable energy (such as Wind energy) to the electrical grid. CAES technologies can be broadly classified into 3 types: Diabatic-CAES (D-CAES), Adiabatic-CAES (A-CAES) and Isothermal-CAES (I-CAES). The author first performs a review on the different types of energy storage available today and a literature review on of CAES system level models, Turbomachinery models, and cavern models. After the gaps in literature are identified, the author then develops a flexible and extensible model of an A-CAES system, which can be used a CAES plant designer to obtain a first order thermodynamic evaluation of a particular plant configuration. The developed model is scalable, modular and can be connected to a control strategy. The model is able to capture time dependent losses and part load behavior of turbomachinery. The modeling methodology is focused around keeping the model extensible, i.e. components and their fidelity can be easily altered for the model's future growth. The components modeled are the compressor, the turbine, the induction motor, the generator, and a thermal energy storage device to the make the CAES plant adiabatic. The model is created using the Matlab/Simulinkʼ software, which is commonly used tool for modeling. The A-CAES plant model was simulated for 23.3 hours comprising of 12.47 hours of charging using a mass flow rate of 107.5 kg/s, 8 hours of storage and 2.83 hours of discharge using a mass flow rate of 400 kg/s. The maximum and minimum cavern pressures were 72 bar and 42 bar respectively. The obtained round trip efficiency is 76.24%. Additionally, the turbine start-up time was found to be 760 seconds. The compressor train average efficiency was calculated as 70%, the expansion train average efficiency was calculated as 81% and the TES efficiency was calculated as 91%. The models simulated the behavior of an A-CAES plant accurately with the compressor and turbine showing a close resemblance to their performance maps. The results indicate that Adiabatic-CAES is a promising and emerging technology. However, further research and development is required beyond this thesis; specifically, in the area of thermal energy storage and management. Finally, the author makes recommendations on how to further improve upon the achieved objectives in this work.

Book University of Arizona Compressed Air Energy Storage

Download or read book University of Arizona Compressed Air Energy Storage written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Boiled down to its essentials, the grant's purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Book Design and Optimization of a Small Compressed Air Energy Storage System for Isolated Applications

Download or read book Design and Optimization of a Small Compressed Air Energy Storage System for Isolated Applications written by Hanif SedighNejad and published by . This book was released on 2022 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this study, a variety of practical and theoretical CAES systems are reviewed in order to show the current status of the available CAES systems. Then a small scale compressed air energy storage for small isolated wind based hybrid energy system is introduced and discussed. In order to develop a cost-effective renewable based hybrid energy system, this research investigates the optimization of each component of the system from the wind turbine to the load to deliver the required energy in the most efficient way. After finding the general control strategy for energy harvesting from the wind, the control strategy based on predictive initial working condition of the air vane motor is investigated through practical tests. A control path is developed using the implemented air motor steady state operation based on its manufacturer datasheet, and it is used to supply a fixed amount of power to the grid. A new criterion for evaluation of different energy storage system with identical power rating and storage capacity is proposed and examined during a case study and the performance of pumped hydro, battery and compressed air energy systems are compared based on the total shortage time and total fuel consumption of backup diesel generators. The Monte Carlo simulation was used in order to regenerate the wind speed data with 10 minute resolution to represent more accurate variable wind speed. The proposed Harvested Energy Index (HEI) showed the ability of energy storage systems with low efficiency in utilizing excess wind energy and reach their storage capacity. Based on the obtained results, a novel general control concept for such systems is proposed and its steady state simulation results are discussed.

Book High temperature Hybrid Compressed Air Storage

Download or read book High temperature Hybrid Compressed Air Storage written by Pirouz Kavehpour and published by . This book was released on 2018 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Design Approach for Compressed Air Energy Storage in Salt Caverns

Download or read book A Design Approach for Compressed Air Energy Storage in Salt Caverns written by Arjun Eric Tharumalingam and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis develops a first order design approach for compressed air energy storage. The objectives of this thesis are to inform geomechanical design with specific energy delivery needs and mechanical constraints. Often aspects of CAES design can be divorced from each other, this thesis attempts to provide a design framework that better integrates the disciplines associated with energy storage design. The geomechanical design will be based on CAES in salt caverns, as they are the best medium, and can be dissolution mined to adapted to specific design needs. The first chapter offers the motivation and necessary background on CAES. Introducing the CAES configurations and discussing existing facilities. The second chapter discusses the methodology behind volume calculations and the state-space model used to characterize the loads the cavern experiences. The third chapter provides an overview of salt caverns; describing the mineralogy of rock salt and its behaviour. The operational failure criteria are discussed, which govern the geomechanical feasibility of the cavern. Three possible cavern shapes are established, describing the 2-D approximations and how they are created. The fourth chapter discusses the numerical modelling methodology with which caverns will be assessed for stability. The chapter details the first order assumptions made to simplify modelling. The fifth chapter describes the design algorithm developed, which serves as the basis for first order assessment. In the sixth chapter, the design algorithm is applied in two case studies. The main purpose of this study was to synthesize design components of a facility into a first order algorithm. This design algorithm can be applied to any site and is simplified to accommodate a range of energy storage requirements. The initial stage of design entails an understanding of salt extent and characteristics such as depth and thickness. With a geographic constraint, one may determine the energy needed, as far as delivery requirements. The site's energy needs will be a design constraint, and appropriate mechanical equipment can be selected which will yield the characteristics of necessary volume, pressure limitations, and discharge times. An energy consumption and production profile can be produced. From here one may assess the cavern's stability to determine a factor of safety. Upon several iterations to fine tune the shape and operability of the cavern, one may proceed into a cost benefit analysis and more rigorous technical design. To demonstrate the design algorithm, two energy storage applications were developed at the same site location. One application was a small-scale energy storage case, and the other was for a much larger grid scale case. The small-scale case could be achieved with a single cavern of 6000 m3, the cavern would have operating pressures between 5 and 10 MPa. It could provide 30 MWh of energy storage. The cavern was cylindrical, and dimensions made for geomechanically sound design. The other cavern was for 1160 MWh application, the mechanical equipment selected required 270,000 m3 of storage. The operating pressures of the cavern were 4.6 and 7.2 MPa. A cylindrical cavern would not have enough salt thickness, to achieve the necessary volume, an ellipsoid was modelled alternatively. It was determined that the ellipsoid would not provide suitable stability. It is recommended to develop four cylindrical caverns instead.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1983 with total page 1368 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Gas Storage with Compressed Air Energy Storage

Download or read book Gas Storage with Compressed Air Energy Storage written by Irina Díaz Llobera and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Installed wind capacity in the European Union is expected to continue to increase due to renewable energy targets and obligations to reduce greenhouse gas emissions. Renewable energy sources such as wind power are variable sources of power. Energy storage technologies are useful to manage the issues associated with variable renewable energy sources and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in electric power systems and can be used in each of the steps of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothening the variability of large penetrations of wind power. Compress Air Energy Storage is one such technology. The aim of this report is to examine the technical and economic feasibility of a combined gas storage and compressed air energy storage facility in the all-island Single Electricity Market of Northern Ireland and the Republic of Ireland in order to optimise power generation and wind power integration. This analysis is undertaken using the electricity market software PLEXOS ® for power systems by developing a model of a combined facility in 2020.

Book Energy Storage Systems in Developing Countries

Download or read book Energy Storage Systems in Developing Countries written by and published by . This book was released on 1984 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geothermally Coupled Well Based Compressed Air Energy Storage

Download or read book Geothermally Coupled Well Based Compressed Air Energy Storage written by and published by . This book was released on 2015 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt: