Download or read book Composition methods in homotopy groups of spheres written by Hiroshi Toda and published by Princeton University Press. This book was released on 1963-01-20 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hiroshi Toda's classic treatment of composition methods in homotopy groups of spheres from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.
Download or read book Composition Methods in Homotopy Groups of Spheres AM 49 Volume 49 written by Hiroshi Toda and published by Princeton University Press. This book was released on 2016-03-02 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The description for this book, Composition Methods in Homotopy Groups of Spheres. (AM-49), Volume 49, will be forthcoming.
Download or read book Complex Cobordism and Stable Homotopy Groups of Spheres written by Douglas C. Ravenel and published by American Mathematical Soc.. This book was released on 2003-11-25 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Download or read book The Goodwillie Tower and the EHP Sequence written by Mark Behrens and published by American Mathematical Soc.. This book was released on 2012 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author studies the interaction between the EHP sequence and the Goodwillie tower of the identity evaluated at spheres at the prime $2$. Both give rise to spectral sequences (the EHP spectral sequence and the Goodwillie spectral sequence, respectively) which compute the unstable homotopy groups of spheres. He relates the Goodwillie filtration to the $P$ map, and the Goodwillie differentials to the $H$ map. Furthermore, he studies an iterated Atiyah-Hirzebruch spectral sequence approach to the homotopy of the layers of the Goodwillie tower of the identity on spheres. He shows that differentials in these spectral sequences give rise to differentials in the EHP spectral sequence. He uses his theory to recompute the $2$-primary unstable stems through the Toda range (up to the $19$-stem). He also studies the homological behavior of the interaction between the EHP sequence and the Goodwillie tower of the identity. This homological analysis involves the introduction of Dyer-Lashof-like operations associated to M. Ching's operad structure on the derivatives of the identity. These operations act on the mod $2$ stable homology of the Goodwillie layers of any functor from spaces to spaces.
Download or read book Groups of Homotopy Spheres I written by M. A. Kervaire and published by . This book was released on 2023-07-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Cohomology Operations and Applications in Homotopy Theory written by Robert E. Mosher and published by Courier Corporation. This book was released on 2008-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cohomology operations are at the center of a major area of activity in algebraic topology. This treatment explores the single most important variety of operations, the Steenrod squares. It constructs these operations, proves their major properties, and provides numerous applications, including several different techniques of homotopy theory useful for computation. 1968 edition.
Download or read book Motivic Homotopy Theory written by Bjorn Ian Dundas and published by Springer Science & Business Media. This book was released on 2007-07-11 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.
Download or read book Nilpotence and Periodicity in Stable Homotopy Theory written by Douglas C. Ravenel and published by Princeton University Press. This book was released on 1992-11-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.
Download or read book Composition Methods in Homotopy Groups of Spheres written by Hirosi Toda and published by . This book was released on 1962 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lecture Notes in Algebraic Topology written by James F. Davis and published by American Mathematical Society. This book was released on 2023-05-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.
Download or read book Stable Stems written by Daniel C. Isaksen and published by American Mathematical Soc.. This book was released on 2020-02-13 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author presents a detailed analysis of 2-complete stable homotopy groups, both in the classical context and in the motivic context over C. He uses the motivic May spectral sequence to compute the cohomology of the motivic Steenrod algebra over C through the 70-stem. He then uses the motivic Adams spectral sequence to obtain motivic stable homotopy groups through the 59-stem. He also describes the complete calculation to the 65-stem, but defers the proofs in this range to forthcoming publications. In addition to finding all Adams differentials, the author also resolves all hidden extensions by 2, η, and ν through the 59-stem, except for a few carefully enumerated exceptions that remain unknown. The analogous classical stable homotopy groups are easy consequences. The author also computes the motivic stable homotopy groups of the cofiber of the motivic element τ. This computation is essential for resolving hidden extensions in the Adams spectral sequence. He shows that the homotopy groups of the cofiber of τ are the same as the E2-page of the classical Adams-Novikov spectral sequence. This allows him to compute the classical Adams-Novikov spectral sequence, including differentials and hidden extensions, in a larger range than was previously known.
Download or read book Homotopy Type Theory Univalent Foundations of Mathematics written by and published by Univalent Foundations. This book was released on with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Algebraic Methods in Unstable Homotopy Theory written by Joseph Neisendorfer and published by Cambridge University Press. This book was released on 2010-02-18 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most modern and thorough treatment of unstable homotopy theory available. The focus is on those methods from algebraic topology which are needed in the presentation of results, proven by Cohen, Moore, and the author, on the exponents of homotopy groups. The author introduces various aspects of unstable homotopy theory, including: homotopy groups with coefficients; localization and completion; the Hopf invariants of Hilton, James, and Toda; Samelson products; homotopy Bockstein spectral sequences; graded Lie algebras; differential homological algebra; and the exponent theorems concerning the homotopy groups of spheres and Moore spaces. This book is suitable for a course in unstable homotopy theory, following a first course in homotopy theory. It is also a valuable reference for both experts and graduate students wishing to enter the field.
Download or read book Cubical Homotopy Theory written by Brian A. Munson and published by Cambridge University Press. This book was released on 2015-10-06 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern, example-driven introduction to cubical diagrams and related topics such as homotopy limits and cosimplicial spaces.
Download or read book A Concise Course in Algebraic Topology written by J. P. May and published by University of Chicago Press. This book was released on 1999-09 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Download or read book The Geometry of Iterated Loop Spaces written by J.P. May and published by Springer. This book was released on 2006-11-15 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Formal Geometry and Bordism Operations written by Eric Peterson and published by Cambridge University Press. This book was released on 2019 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delivers a broad, conceptual introduction to chromatic homotopy theory, focusing on contact with arithmetic and algebraic geometry.