EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Completing the Riesz Dunford Functional Calculus

Download or read book Completing the Riesz Dunford Functional Calculus written by John B. Conway and published by American Mathematical Soc.. This book was released on 1989 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let [script lowercase]f be any analytic function defined in a neighborhood of the non-empty set [italic]E and let [script]S([italic]E) denote the set of all operator having spectrum included in [italic]E. In this paper the closure and interior of the set [script lowercase]f([script]S([italic]E)) [identical equality] {[script lowercase]f([italic]A): [italic]A [set membership] [script]S([italic]E)} are characterized. Some applications serve to illustrate the interplay between the analyticity of the functions and the spectral behavior of the operators.

Book Operator Analysis

    Book Details:
  • Author : Jim Agler
  • Publisher : Cambridge University Press
  • Release : 2020-03-26
  • ISBN : 1108485448
  • Pages : 393 pages

Download or read book Operator Analysis written by Jim Agler and published by Cambridge University Press. This book was released on 2020-03-26 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph, aimed at graduate students and researchers, explores the use of Hilbert space methods in function theory. Explaining how operator theory interacts with function theory in one and several variables, the authors journey from an accessible explanation of the techniques to their uses in cutting edge research.

Book Noncommutative Functional Calculus

Download or read book Noncommutative Functional Calculus written by Prof. Fabrizio Colombo Politecnico di Milano and published by Springer Science & Business Media. This book was released on 2011-03-18 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a functional calculus for n-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra: the so-called slice monogenic functions which are carefully described in the book. In the case of functions with values in the algebra of quaternions these functions are named slice regular functions. Except for the appendix and the introduction all results are new and appear for the first time organized in a monograph. The material has been carefully prepared to be as self-contained as possible. The intended audience consists of researchers, graduate and postgraduate students interested in operator theory, spectral theory, hypercomplex analysis, and mathematical physics.

Book Operators  Functions  and Systems  Model operators and systems

Download or read book Operators Functions and Systems Model operators and systems written by Nikolaĭ Kapitonovich Nikolʹskiĭ and published by American Mathematical Soc.. This book was released on 2002 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Operators  Functions  and Systems   An Easy Reading

Download or read book Operators Functions and Systems An Easy Reading written by Nikolai K. Nikolski and published by American Mathematical Soc.. This book was released on 2010-10-06 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Together with the companion volume by the same author, Operators, Functions, and Systems: An Easy Reading. Volume 1: Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, Vol. 92, AMS, 2002, this unique work combines four major topics of modern analysis and its applications: A. Hardy classes of holomorphic functions, B. Spectral theory of Hankel and Toeplitz operators, C. Function models for linear operators and free interpolations, and D. Infinite-dimensional system theory and signal processing. This volume contains Parts C and D. Function models for linear operators and free interpolations: This is a universal topic and, indeed, is the most influential operator theory technique in the post-spectral-theorem era. In this book, its capacity is tested by solving generalized Carleson-type interpolation problems. Infinite-dimensional system theory and signal processing: This topic is the touchstone of the three previously developed techniques. The presence of this applied topic in a pure mathematics environment reflects important changes in the mathematical landscape of the last 20 years, in that the role of the main consumer and customer of harmonic, complex, and operator analysis has more and more passed from differential equations, scattering theory, and probability to control theory and signal processing. This and the companion volume are geared toward a wide audience of readers, from graduate students to professional mathematicians. They develop an elementary approach to the subject while retaining an expert level that can be applied in advanced analysis and selected applications.

Book Operator Algebras  Operator Theory and Applications

Download or read book Operator Algebras Operator Theory and Applications written by J. J. Grobler and published by Springer Science & Business Media. This book was released on 2009-12-24 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the eighteenth International Workshop on Operator Theory and Applications (IWOTA), hosted by the Unit for Business Mathematics and Informatics of North-West University, Potchefstroom, South Africa from July 3 to 6, 2007. The conference (as well as these proceedings) was dedicated to Professors Joseph A. Ball and Marinus M. Kaashoek on the occasion of their 60th and 70th birthdays, respectively. This conference had a particular focus on Von Neumann algebras at the interface of operator theory with functional analysis and on applications of operator theory to differential equations.

Book The Theory of Fractional Powers of Operators

Download or read book The Theory of Fractional Powers of Operators written by C. Martinez and published by Elsevier. This book was released on 2001-01-17 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book makes available to researchers and advanced graduates a simple and direct presentation of the fundamental aspects of the theory of fractional powers of non-negative operators, which have important links with partial differential equations and harmonic analysis. For the first time ever, a book deals with this subject monographically, despite the large number of papers written on it during the second half of the century. The first chapters are concerned with the construction of a basic theory of fractional powers and study the classic questions in that respect. A new and distinct feature is that the approach adopted has allowed the extension of this theory to locally convex spaces, thereby including certain differential operators, which appear naturally in distribution spaces. The bulk of the second part of the book is dedicated to powers with pure imaginary exponents, which have been the focus of research in recent years, ever since the publication in 1987 of the now classic paper by G.Dore and A.Venni. Special care has been taken to give versions of the results with more accurate hypotheses, particularly with respect to the density of the domain or the range of the operator. The authors have made a point of making the text clear and self-contained. Accordingly, an extensive appendix contains the material on real and functional analysis used and, at the end of each chapter there are detailed historical and bibliographical notes in order to understand the development and current state of research into the questions dealt with.

Book The Functional Calculus for Sectorial Operators

Download or read book The Functional Calculus for Sectorial Operators written by Markus Haase and published by Springer Science & Business Media. This book was released on 2006-08-18 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a systematic and partly axiomatic treatment of the holomorphic functional calculus for unbounded sectorial operators. The account is generic so that it can be used to construct and interrelate holomorphic functional calculi for other types of unbounded operators. Particularly, an elegant unified approach to holomorphic semigroups is obtained. The last chapter describes applications to PDE, evolution equations and approximation theory as well as the connection with harmonic analysis.

Book Encyclopaedia of Mathematics

Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.

Book Spectral Theory  Mathematical System Theory  Evolution Equations  Differential and Difference Equations

Download or read book Spectral Theory Mathematical System Theory Evolution Equations Differential and Difference Equations written by Wolfgang Arendt and published by Springer Science & Business Media. This book was released on 2012-06-15 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume contains a collection of original research articles and expository contributions on recent developments in operator theory and its multifaceted applications. They cover a wide range of themes from the IWOTA 2010 conference held at the TU Berlin, Germany, including spectral theory, function spaces, mathematical system theory, evolution equations and semigroups, and differential and difference operators. The book encompasses new trends and various modern topics in operator theory, and serves as a useful source of information to mathematicians, scientists and engineers.

Book Recent Developments in Operator Theory  Mathematical Physics and Complex Analysis

Download or read book Recent Developments in Operator Theory Mathematical Physics and Complex Analysis written by Daniel Alpay and published by Springer Nature. This book was released on 2023-04-11 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.

Book Spectral Theory of Bounded Linear Operators

Download or read book Spectral Theory of Bounded Linear Operators written by Carlos S. Kubrusly and published by Springer Nature. This book was released on 2020-01-30 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces spectral theory for bounded linear operators by focusing on (i) the spectral theory and functional calculus for normal operators acting on Hilbert spaces; (ii) the Riesz-Dunford functional calculus for Banach-space operators; and (iii) the Fredholm theory in both Banach and Hilbert spaces. Detailed proofs of all theorems are included and presented with precision and clarity, especially for the spectral theorems, allowing students to thoroughly familiarize themselves with all the important concepts. Covering both basic and more advanced material, the five chapters and two appendices of this volume provide a modern treatment on spectral theory. Topics range from spectral results on the Banach algebra of bounded linear operators acting on Banach spaces to functional calculus for Hilbert and Banach-space operators, including Fredholm and multiplicity theories. Supplementary propositions and further notes are included as well, ensuring a wide range of topics in spectral theory are covered. Spectral Theory of Bounded Linear Operators is ideal for graduate students in mathematics, and will also appeal to a wider audience of statisticians, engineers, and physicists. Though it is mostly self-contained, a familiarity with functional analysis, especially operator theory, will be helpful.

Book Bernstein Functions

    Book Details:
  • Author : René L. Schilling
  • Publisher : Walter de Gruyter
  • Release : 2012-10-01
  • ISBN : 3110269333
  • Pages : 424 pages

Download or read book Bernstein Functions written by René L. Schilling and published by Walter de Gruyter. This book was released on 2012-10-01 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bernstein functions appear in various fields of mathematics, e.g. probability theory, potential theory, operator theory, functional analysis and complex analysis – often with different definitions and under different names. Among the synonyms are `Laplace exponent' instead of Bernstein function, and complete Bernstein functions are sometimes called `Pick functions', `Nevanlinna functions' or `operator monotone functions'. This monograph – now in its second revised and extended edition – offers a self-contained and unified approach to Bernstein functions and closely related function classes, bringing together old and establishing new connections. For the second edition the authors added a substantial amount of new material. As in the first edition Chapters 1 to 11 contain general material which should be accessible to non-specialists, while the later Chapters 12 to 15 are devoted to more specialized topics. An extensive list of complete Bernstein functions with their representations is provided.

Book Notices of the American Mathematical Society

Download or read book Notices of the American Mathematical Society written by American Mathematical Society and published by . This book was released on 1989 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Feynman Integral and Feynman s Operational Calculus

Download or read book The Feynman Integral and Feynman s Operational Calculus written by Gerald W. Johnson and published by Clarendon Press. This book was released on 2000-03-16 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the most comprehensive mathematical treatment to date of the Feynman path integral and Feynman's operational calculus. It is accessible to mathematicians, mathematical physicists and theoretical physicists. Including new results and much material previously only available in the research literature, this book discusses both the mathematics and physics background that motivate the study of the Feynman path integral and Feynman's operational calculus, and also provides more detailed proofs of the central results.

Book Quantized Number Theory  Fractal Strings And The Riemann Hypothesis  From Spectral Operators To Phase Transitions And Universality

Download or read book Quantized Number Theory Fractal Strings And The Riemann Hypothesis From Spectral Operators To Phase Transitions And Universality written by Hafedh Herichi and published by World Scientific. This book was released on 2021-07-27 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen 'heuristically' introduced the spectral operator in their development of the theory of fractal strings and their complex dimensions, specifically in their reinterpretation of the earlier work of M L Lapidus and H Maier on inverse spectral problems for fractal strings and the Riemann hypothesis.One of the main themes of the book is to provide a rigorous framework within which the corresponding question 'Can one hear the shape of a fractal string?' or, equivalently, 'Can one obtain information about the geometry of a fractal string, given its spectrum?' can be further reformulated in terms of the invertibility or the quasi-invertibility of the spectral operator.The infinitesimal shift of the real line is first precisely defined as a differentiation operator on a family of suitably weighted Hilbert spaces of functions on the real line and indexed by a dimensional parameter c. Then, the spectral operator is defined via the functional calculus as a function of the infinitesimal shift. In this manner, it is viewed as a natural 'quantum' analog of the Riemann zeta function. More precisely, within this framework, the spectral operator is defined as the composite map of the Riemann zeta function with the infinitesimal shift, viewed as an unbounded normal operator acting on the above Hilbert space.It is shown that the quasi-invertibility of the spectral operator is intimately connected to the existence of critical zeros of the Riemann zeta function, leading to a new spectral and operator-theoretic reformulation of the Riemann hypothesis. Accordingly, the spectral operator is quasi-invertible for all values of the dimensional parameter c in the critical interval (0,1) (other than in the midfractal case when c =1/2) if and only if the Riemann hypothesis (RH) is true. A related, but seemingly quite different, reformulation of RH, due to the second author and referred to as an 'asymmetric criterion for RH', is also discussed in some detail: namely, the spectral operator is invertible for all values of c in the left-critical interval (0,1/2) if and only if RH is true.These spectral reformulations of RH also led to the discovery of several 'mathematical phase transitions' in this context, for the shape of the spectrum, the invertibility, the boundedness or the unboundedness of the spectral operator, and occurring either in the midfractal case or in the most fractal case when the underlying fractal dimension is equal to ½ or 1, respectively. In particular, the midfractal dimension c=1/2 is playing the role of a critical parameter in quantum statistical physics and the theory of phase transitions and critical phenomena.Furthermore, the authors provide a 'quantum analog' of Voronin's classical theorem about the universality of the Riemann zeta function. Moreover, they obtain and study quantized counterparts of the Dirichlet series and of the Euler product for the Riemann zeta function, which are shown to converge (in a suitable sense) even inside the critical strip.For pedagogical reasons, most of the book is devoted to the study of the quantized Riemann zeta function. However, the results obtained in this monograph are expected to lead to a quantization of most classic arithmetic zeta functions, hence, further 'naturally quantizing' various aspects of analytic number theory and arithmetic geometry.The book should be accessible to experts and non-experts alike, including mathematics and physics graduate students and postdoctoral researchers, interested in fractal geometry, number theory, operator theory and functional analysis, differential equations, complex analysis, spectral theory, as well as mathematical and theoretical physics. Whenever necessary, suitable background about the different subjects involved is provided and the new work is placed in its proper historical context. Several appendices supplementing the main text are also included.

Book An Indefinite Excursion in Operator Theory

Download or read book An Indefinite Excursion in Operator Theory written by Aurelian Gheondea and published by Cambridge University Press. This book was released on 2022-07-28 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a modern, readable introduction to spaces with indefinite inner product and their operator theory.