Download or read book COMPANY BANKRUPTCY ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-08-25 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this comprehensive project titled "Company Bankruptcy Analysis and Prediction Using Machine Learning with Python GUI," we embarked on a journey to explore, analyze, and predict the bankruptcy status of companies. Our project began with an exploration of the dataset, which involved importing it using Pandas and refining it by removing leading spaces and replacing spaces with underscores in column names to ensure consistency. To grasp the dataset's characteristics, we delved into categorized features' distributions, allowing us to understand the underlying patterns within the data. This step helped us gain insights into the distribution of attributes across different classes, aiding in feature selection and engineering. Moving on to the heart of our project, the prediction of company bankruptcy, we employed various machine learning models. Utilizing grid search, we performed hyperparameter tuning to optimize model performance. Our model arsenal included Logistic Regression, K-Nearest Neighbors, Support Vector, Decision Trees, Random Forests, Gradient Boosting, AdaBoost, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP), which were evaluated using accuracy, precision, recall, and F1-score. Transitioning to deep learning, we implemented an Artificial Neural Network (ANN) model. This involved constructing a feed-forward neural network with hidden layers, dropouts, and activation functions. We evaluated the ANN using accuracy, precision, recall, and F1-score, gaining a comprehensive understanding of its classification performance. Our journey into deep learning continued with the implementation of Long Short-Term Memory (LSTM) networks, which are well-suited for sequence data. We structured the LSTM model with multiple layers and dropouts, evaluating its performance using metrics like accuracy, precision, recall, and F1-score. This marked a pivotal step in predicting company bankruptcy. Furthermore, we explored Feed-Forward Neural Networks (FNN) for prediction. Constructing a multi-layered architecture with varied dropouts and activation functions, we assessed its classification capabilities using metrics similar to previous models. Incorporating Recurrent Neural Networks (RNN) added another dimension to our analysis. Building an RNN model with sequential data, we examined its accuracy, precision, recall, and F1-score, highlighting its ability to capture sequential patterns in bankruptcy data. To comprehensively evaluate our models, we employed a range of metrics including precision, recall, F1-score, and accuracy. These metrics enabled us to gauge not only the overall model performance but also its capability to correctly predict bankrupt and non-bankrupt cases. Our project also extended into creating a Python GUI using PyQt. This graphical interface facilitated user interaction, allowing them to input data for prediction and view the outcomes through an intuitive interface. This GUI enhanced accessibility and usability, making it easier for users to engage with our models. In conclusion, our journey through the "Company Bankruptcy Analysis and Prediction Using Machine Learning with Python GUI" project encompassed data exploration, categorized features distribution analysis, model selection, performance evaluation using diverse metrics, and the creation of an interactive GUI. This endeavor combined analytical rigor, machine learning expertise, and user-centric design to provide a comprehensive solution for predicting company bankruptcy.
Download or read book 5 FIVE DATA SCIENCE PROJECTS FOR ANALYSIS CLASSIFICATION PREDICTION AND SENTIMENT ANALYSIS WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-04-29 with total page 979 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROJECT 1: SUPERMARKET SALES ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project consists of the growth of supermarkets with high market competitions in most populated cities. The dataset is one of the historical sales of supermarket company which has recorded in 3 different branches for 3 months data. Predictive data analytics methods are easy to apply with this dataset. Attribute information in the dataset are as follows: Invoice id: Computer generated sales slip invoice identification number; Branch: Branch of supercenter (3 branches are available identified by A, B and C); City: Location of supercenters; Customer type: Type of customers, recorded by Members for customers using member card and Normal for without member card; Gender: Gender type of customer; Product line: General item categorization groups - Electronic accessories, Fashion accessories, Food and beverages, Health and beauty, Home and lifestyle, Sports and travel; Unit price: Price of each product in $; Quantity: Number of products purchased by customer; Tax: 5% tax fee for customer buying; Total: Total price including tax; Date: Date of purchase (Record available from January 2019 to March 2019); Time: Purchase time (10am to 9pm); Payment: Payment used by customer for purchase (3 methods are available – Cash, Credit card and Ewallet); COGS: Cost of goods sold; Gross margin percentage: Gross margin percentage; Gross income: Gross income; and Rating: Customer stratification rating on their overall shopping experience (On a scale of 1 to 10). In this project, you will perform predicting rating using machine learning. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: DETECTING CYBERBULLYING TWEETS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI As social media usage becomes increasingly prevalent in every age group, a vast majority of citizens rely on this essential medium for day-to-day communication. Social media’s ubiquity means that cyberbullying can effectively impact anyone at any time or anywhere, and the relative anonymity of the internet makes such personal attacks more difficult to stop than traditional bullying. On April 15th, 2020, UNICEF issued a warning in response to the increased risk of cyberbullying during the COVID-19 pandemic due to widespread school closures, increased screen time, and decreased face-to-face social interaction. The statistics of cyberbullying are outright alarming: 36.5% of middle and high school students have felt cyberbullied and 87% have observed cyberbullying, with effects ranging from decreased academic performance to depression to suicidal thoughts. In light of all of this, this dataset contains more than 47000 tweets labelled according to the class of cyberbullying: Age; Ethnicity; Gender; Religion; Other type of cyberbullying; and Not cyberbullying. The data has been balanced in order to contain ~8000 of each class. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, LSTM, and CNN. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: HIGHER EDUCATION STUDENT ACADEMIC PERFORMANCE ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project was collected from the Faculty of Engineering and Faculty of Educational Sciences students in 2019. The purpose is to predict students' end-of-term performances using ML techniques. Attribute information in the dataset are as follows: Student ID; Student Age (1: 18-21, 2: 22-25, 3: above 26); Sex (1: female, 2: male); Graduated high-school type: (1: private, 2: state, 3: other); Scholarship type: (1: None, 2: 25%, 3: 50%, 4: 75%, 5: Full); Additional work: (1: Yes, 2: No); Regular artistic or sports activity: (1: Yes, 2: No); Do you have a partner: (1: Yes, 2: No); Total salary if available (1: USD 135-200, 2: USD 201-270, 3: USD 271-340, 4: USD 341-410, 5: above 410); Transportation to the university: (1: Bus, 2: Private car/taxi, 3: bicycle, 4: Other); Accommodation type in Cyprus: (1: rental, 2: dormitory, 3: with family, 4: Other); Mother's education: (1: primary school, 2: secondary school, 3: high school, 4: university, 5: MSc., 6: Ph.D.); Father's education: (1: primary school, 2: secondary school, 3: high school, 4: university, 5: MSc., 6: Ph.D.); Number of sisters/brothers (if available): (1: 1, 2:, 2, 3: 3, 4: 4, 5: 5 or above); Parental status: (1: married, 2: divorced, 3: died - one of them or both); Mother's occupation: (1: retired, 2: housewife, 3: government officer, 4: private sector employee, 5: self-employment, 6: other); Father's occupation: (1: retired, 2: government officer, 3: private sector employee, 4: self-employment, 5: other); Weekly study hours: (1: None, 2: <5 hours, 3: 6-10 hours, 4: 11-20 hours, 5: more than 20 hours); Reading frequency (non-scientific books/journals): (1: None, 2: Sometimes, 3: Often); Reading frequency (scientific books/journals): (1: None, 2: Sometimes, 3: Often); Attendance to the seminars/conferences related to the department: (1: Yes, 2: No); Impact of your projects/activities on your success: (1: positive, 2: negative, 3: neutral); Attendance to classes (1: always, 2: sometimes, 3: never); Preparation to midterm exams 1: (1: alone, 2: with friends, 3: not applicable); Preparation to midterm exams 2: (1: closest date to the exam, 2: regularly during the semester, 3: never); Taking notes in classes: (1: never, 2: sometimes, 3: always); Listening in classes: (1: never, 2: sometimes, 3: always); Discussion improves my interest and success in the course: (1: never, 2: sometimes, 3: always); Flip-classroom: (1: not useful, 2: useful, 3: not applicable); Cumulative grade point average in the last semester (/4.00): (1: <2.00, 2: 2.00-2.49, 3: 2.50-2.99, 4: 3.00-3.49, 5: above 3.49); Expected Cumulative grade point average in the graduation (/4.00): (1: <2.00, 2: 2.00-2.49, 3: 2.50-2.99, 4: 3.00-3.49, 5: above 3.49); Course ID; and OUTPUT: Grade (0: Fail, 1: DD, 2: DC, 3: CC, 4: CB, 5: BB, 6: BA, 7: AA). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: COMPANY BANKRUPTCY ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset was collected from the Taiwan Economic Journal for the years 1999 to 2009. Company bankruptcy was defined based on the business regulations of the Taiwan Stock Exchange. Attribute information in the dataset are as follows: Y - Bankrupt?: Class label; X1 - ROA(C) before interest and depreciation before interest: Return On Total Assets(C); X2 - ROA(A) before interest and % after tax: Return On Total Assets(A); X3 - ROA(B) before interest and depreciation after tax: Return On Total Assets(B); X4 - Operating Gross Margin: Gross Profit/Net Sales; X5 - Realized Sales Gross Margin: Realized Gross Profit/Net Sales; X6 - Operating Profit Rate: Operating Income/Net Sales; X7 - Pre-tax net Interest Rate: Pre-Tax Income/Net Sales; X8 - After-tax net Interest Rate: Net Income/Net Sales; X9 - Non-industry income and expenditure/revenue: Net Non-operating Income Ratio; X10 - Continuous interest rate (after tax): Net Income-Exclude Disposal Gain or Loss/Net Sales; X11 - Operating Expense Rate: Operating Expenses/Net Sales; X12 - Research and development expense rate: (Research and Development Expenses)/Net Sales X13 - Cash flow rate: Cash Flow from Operating/Current Liabilities; X14 - Interest-bearing debt interest rate: Interest-bearing Debt/Equity; X15 - Tax rate (A): Effective Tax Rate; X16 - Net Value Per Share (B): Book Value Per Share(B); X17 - Net Value Per Share (A): Book Value Per Share(A); X18 - Net Value Per Share (C): Book Value Per Share(C); X19 - Persistent EPS in the Last Four Seasons: EPS-Net Income; X20 - Cash Flow Per Share; X21 - Revenue Per Share (Yuan ¥): Sales Per Share; X22 - Operating Profit Per Share (Yuan ¥): Operating Income Per Share; X23 - Per Share Net profit before tax (Yuan ¥): Pretax Income Per Share; X24 - Realized Sales Gross Profit Growth Rate; X25 - Operating Profit Growth Rate: Operating Income Growth; X26 - After-tax Net Profit Growth Rate: Net Income Growth; X27 - Regular Net Profit Growth Rate: Continuing Operating Income after Tax Growth; X28 - Continuous Net Profit Growth Rate: Net Income-Excluding Disposal Gain or Loss Growth; X29 - Total Asset Growth Rate: Total Asset Growth; X30 - Net Value Growth Rate: Total Equity Growth; X31 - Total Asset Return Growth Rate Ratio: Return on Total Asset Growth; X32 - Cash Reinvestment %: Cash Reinvestment Ratio X33 - Current Ratio; X34 - Quick Ratio: Acid Test; X35 - Interest Expense Ratio: Interest Expenses/Total Revenue; X36 - Total debt/Total net worth: Total Liability/Equity Ratio; X37 - Debt ratio %: Liability/Total Assets; X38 - Net worth/Assets: Equity/Total Assets; X39 - Long-term fund suitability ratio (A): (Long-term Liability+Equity)/Fixed Assets; X40 - Borrowing dependency: Cost of Interest-bearing Debt; X41 - Contingent liabilities/Net worth: Contingent Liability/Equity; X42 - Operating profit/Paid-in capital: Operating Income/Capital; X43 - Net profit before tax/Paid-in capital: Pretax Income/Capital; X44 - Inventory and accounts receivable/Net value: (Inventory+Accounts Receivables)/Equity; X45 - Total Asset Turnover; X46 - Accounts Receivable Turnover; X47 - Average Collection Days: Days Receivable Outstanding; X48 - Inventory Turnover Rate (times); X49 - Fixed Assets Turnover Frequency; X50 - Net Worth Turnover Rate (times): Equity Turnover; X51 - Revenue per person: Sales Per Employee; X52 - Operating profit per person: Operation Income Per Employee; X53 - Allocation rate per person: Fixed Assets Per Employee; X54 - Working Capital to Total Assets; X55 - Quick Assets/Total Assets; X56 - Current Assets/Total Assets; X57 - Cash/Total Assets; X58 - Quick Assets/Current Liability; X59 - Cash/Current Liability; X60 - Current Liability to Assets; X61 - Operating Funds to Liability; X62 - Inventory/Working Capital; X63 - Inventory/Current Liability X64 - Current Liabilities/Liability; X65 - Working Capital/Equity; X66 - Current Liabilities/Equity; X67 - Long-term Liability to Current Assets; X68 - Retained Earnings to Total Assets; X69 - Total income/Total expense; X70 - Total expense/Assets; X71 - Current Asset Turnover Rate: Current Assets to Sales; X72 - Quick Asset Turnover Rate: Quick Assets to Sales; X73 - Working capitcal Turnover Rate: Working Capital to Sales; X74 - Cash Turnover Rate: Cash to Sales; X75 - Cash Flow to Sales; X76 - Fixed Assets to Assets; X77 - Current Liability to Liability; X78 - Current Liability to Equity; X79 - Equity to Long-term Liability; X80 - Cash Flow to Total Assets; X81 - Cash Flow to Liability; X82 - CFO to Assets; X83 - Cash Flow to Equity; X84 - Current Liability to Current Assets; X85 - Liability-Assets Flag: 1 if Total Liability exceeds Total Assets, 0 otherwise; X86 - Net Income to Total Assets; X87 - Total assets to GNP price; X88 - No-credit Interval; X89 - Gross Profit to Sales; X90 - Net Income to Stockholder's Equity; X91 - Liability to Equity; X92 - Degree of Financial Leverage (DFL); X93 - Interest Coverage Ratio (Interest expense to EBIT); X94 - Net Income Flag: 1 if Net Income is Negative for the last two years, 0 otherwise; and X95 - Equity to Liabilitys. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 5: DATA SCIENCE FOR RAIN CLASSIFICATION AND PREDICTION WITH PYTHON GUI This dataset contains about 10 years of daily weather observations from many locations across Australia. RainTomorrow is the target variable to predict. You will determine rain or not in the next day. This column is Yes if the rain for that day was 1mm or more. Observations were drawn from numerous weather stations. The daily observations are available from http://www.bom.gov.au/climate/data. The dataset contains 23 attributes. Some of them are as follows: About some of them are: DATE - The date of observation; LOCATION - The common name of the location of the weather station; MINTEMP - The minimum temperature in degrees celsius; MAXTEMP - The maximum temperature in degrees celsius; RAINFALL - The amount of rainfall recorded for the day in mm; EVAPORATION - The so-called Class A pan evaporation (mm) in the 24 hours to 9am; SUNSHINE - The number of hours of bright sunshine in the day; WINDGUESTDIR - The direction of the strongest wind gust in the 24 hours to midnight; WINDGUESTSPEED- The speed (km/h) of the strongest wind gust in the 24 hours to midnight; and WINDDIR9AM - Direction of the wind at 9am. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy.
Download or read book Financial Statement Analysis and the Prediction of Financial Distress written by William H. Beaver and published by Now Publishers Inc. This book was released on 2011 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial Statement Analysis and the Prediction of Financial Distress discusses the evolution of three main streams within the financial distress prediction literature: the set of dependent and explanatory variables used, the statistical methods of estimation, and the modeling of financial distress. Section 1 discusses concepts of financial distress. Section 2 discusses theories regarding the use of financial ratios as predictors of financial distress. Section 3 contains a brief review of the literature. Section 4 discusses the use of market price-based models of financial distress. Section 5 develops the statistical methods for empirical estimation of the probability of financial distress. Section 6 discusses the major empirical findings with respect to prediction of financial distress. Section 7 briefly summarizes some of the more relevant literature with respect to bond ratings. Section 8 presents some suggestions for future research and Section 9 presents concluding remarks.
Download or read book Predictive Analytics and Data Mining written by Vijay Kotu and published by Morgan Kaufmann. This book was released on 2014-11-27 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Put Predictive Analytics into ActionLearn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining.You’ll be able to:1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process.2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases.3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples
Download or read book AI and Financial Markets written by Shigeyuki Hamori and published by MDPI. This book was released on 2020-07-01 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence (AI) is regarded as the science and technology for producing an intelligent machine, particularly, an intelligent computer program. Machine learning is an approach to realizing AI comprising a collection of statistical algorithms, of which deep learning is one such example. Due to the rapid development of computer technology, AI has been actively explored for a variety of academic and practical purposes in the context of financial markets. This book focuses on the broad topic of “AI and Financial Markets”, and includes novel research associated with this topic. The book includes contributions on the application of machine learning, agent-based artificial market simulation, and other related skills to the analysis of various aspects of financial markets.
Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Download or read book Applications of Topic Models written by Jordan Boyd-Graber and published by Now Publishers. This book was released on 2017-07-13 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes recent academic and industrial applications of topic models with the goal of launching a young researcher capable of building their own applications of topic models.
Download or read book Programming Collective Intelligence written by Toby Segaran and published by "O'Reilly Media, Inc.". This book was released on 2007-08-16 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details." -- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths." -- Tim Wolters, CTO, Collective Intellect
Download or read book Applied Multivariate Statistical Analysis written by Wolfgang Karl Härdle and published by Springer Nature. This book was released on with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Genetic Algorithms in Search Optimization and Machine Learning written by David Edward Goldberg and published by Addison-Wesley Professional. This book was released on 1989 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.
Download or read book Efficient Learning Machines written by Mariette Awad and published by Apress. This book was released on 2015-04-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.
Download or read book Soft Computing and Machine Learning with Python written by Zoran Gacovski and published by Arcler Press. This book was released on 2018-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A definition states that the machine learning is a discipline that allows the computers to learn without explicit programming. The challenge in machine learning is how to accurately (algorithmic) describe some kinds of tasks that people can easily solve (for example face recognition, speech recognition etc.). Such algorithms can be defined for certain types of tasks, but they are very complex and/or require large knowledge base (e.g. machine translation MT). In many of the areas - data are continuously collected in order to get "some knowledge out of them" for example - in medicine (patient data and therapy), in marketing (the users / customers and what they buy, what are they interested in, how products are rated etc.). Data analysis of this scale requires approaches that will allow you to discover patterns and dependences among the data, that are neither known, nor obvious, but can be useful (data mining). Information retrieval - IR, is finding existing information as quickly as possible. For example, web browser - finds page within the (large) set of the entire WWW. Machine Learning - ML, is a set of techniques that generalize existing knowledge of the new information, as precisely as possible. An example is the speech recognition. Data mining - DM, primarily relates to the disclosure of something hidden within the data, some new dependence, which have not previously been known. Example is CRM - the customer analysis. Python is high-level programming language that is very suitable for web development, programming of games, and data manipulation / machine learning applications. It is object-oriented language and interpreter as well, allowing the source code to execute directly (without compiling). This edition covers machine learning theory and applications with Python, and includes chapters for soft computing theory, machine learning techniques/applications, Python language details, and machine learning examples with Python. Book jacket.
Download or read book Recent Advances on Soft Computing and Data Mining written by Rozaida Ghazali and published by Springer Nature. This book was released on 2019-12-04 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to data science and offers a practical overview of the concepts and techniques that readers need to get the most out of their large-scale data mining projects and research studies. It discusses data-analytical thinking, which is essential to extract useful knowledge and obtain commercial value from the data. Also known as data-driven science, soft computing and data mining disciplines cover a broad interdisciplinary range of scientific methods and processes. The book provides readers with sufficient knowledge to tackle a wide range of issues in complex systems, bringing together the scopes that integrate soft computing and data mining in various combinations of applications and practices, since to thrive in these data-driven ecosystems, researchers, data analysts and practitioners must understand the design choice and options of these approaches. This book helps readers to solve complex benchmark problems and to better appreciate the concepts, tools and techniques used.
Download or read book Bayesian Networks written by Olivier Pourret and published by John Wiley & Sons. This book was released on 2008-04-30 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.
Download or read book Advances in Communication and Computational Technology written by Gurdeep Singh Hura and published by Springer Nature. This book was released on 2020-08-13 with total page 1498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents high-quality peer-reviewed papers from the International Conference on Advanced Communication and Computational Technology (ICACCT) 2019 held at the National Institute of Technology, Kurukshetra, India. The contents are broadly divided into four parts: (i) Advanced Computing, (ii) Communication and Networking, (iii) VLSI and Embedded Systems, and (iv) Optimization Techniques.The major focus is on emerging computing technologies and their applications in the domain of communication and networking. The book will prove useful for engineers and researchers working on physical, data link and transport layers of communication protocols. Also, this will be useful for industry professionals interested in manufacturing of communication devices, modems, routers etc. with enhanced computational and data handling capacities.
Download or read book Evolutionary Computing and Mobile Sustainable Networks written by V. Suma and published by Springer Nature. This book was released on 2020-07-31 with total page 975 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features selected research papers presented at the International Conference on Evolutionary Computing and Mobile Sustainable Networks (ICECMSN 2020), held at the Sir M. Visvesvaraya Institute of Technology on 20–21 February 2020. Discussing advances in evolutionary computing technologies, including swarm intelligence algorithms and other evolutionary algorithm paradigms which are emerging as widely accepted descriptors for mobile sustainable networks virtualization, optimization and automation, this book is a valuable resource for researchers in the field of evolutionary computing and mobile sustainable networks.
Download or read book Machine Learning and Big Data Analytics Proceedings of International Conference on Machine Learning and Big Data Analytics ICMLBDA 2021 written by Rajiv Misra and published by Springer Nature. This book was released on 2021-09-29 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume on machine learning and big data analytics (Proceedings of ICMLBDA 2021) is intended to be used as a reference book for researchers and practitioners in the disciplines of computer science, electronics and telecommunication, information science, and electrical engineering. Machine learning and Big data analytics represent a key ingredients in the industrial applications for new products and services. Big data analytics applies machine learning for predictions by examining large and varied data sets—i.e., big data—to uncover hidden patterns, unknown correlations, market trends, customer preferences, and other useful information that can help organizations make more informed business decisions.