EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Colloidal Synthesis of Metal Oxide Nanocrystals and Thin Films

Download or read book Colloidal Synthesis of Metal Oxide Nanocrystals and Thin Films written by and published by . This book was released on 2008 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Download or read book Chemically Deposited Nanocrystalline Metal Oxide Thin Films written by Fabian I. Ezema and published by Springer Nature. This book was released on 2021-06-26 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book guides beginners in the areas of thin film preparation, characterization, and device making, while providing insight into these areas for experts. As chemically deposited metal oxides are currently gaining attention in development of devices such as solar cells, supercapacitors, batteries, sensors, etc., the book illustrates how the chemical deposition route is emerging as a relatively inexpensive, simple, and convenient solution for large area deposition. The advancement in the nanostructured materials for the development of devices is fully discussed.

Book Colloidal Metal Oxide Nanoparticles

Download or read book Colloidal Metal Oxide Nanoparticles written by and published by Elsevier. This book was released on 2019-10-16 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Colloidal Metal Oxide Nanoparticles: Synthesis, Characterization and Applications is a one-stop reference for anyone with an interest in the fundamentals, synthesis and applications of this interesting materials system. The book presents a simple, effective and detailed discussion on colloidal metal oxide nanoparticles. It begins with a general introduction of colloidal metal oxide nanoparticles, then delves into the most relevant synthesis pathways, stabilization procedures, and synthesis and characterization techniques. Final sections discuss promising applications, including bioimaging, biosensing, diagnostic, and energy applications—i.e., solar cells, supercapacitors and environment applications—i.e., the treatment of contaminated soil, water purification and waste remediation. Provides the most comprehensive resource on the topic, from fundamentals, to synthesis and characterization techniques Presents key applications, including biomedical, energy, electronic and environmental Discusses the most relevant techniques for synthesis, patterning and characterization

Book Synthesis of Colloidal Metal Oxide Nanocrystals and Nanostructured Surfaces Using a Continuous Flow Microreactor System and Their Applications in Two phase Boiling Heat Transfer

Download or read book Synthesis of Colloidal Metal Oxide Nanocrystals and Nanostructured Surfaces Using a Continuous Flow Microreactor System and Their Applications in Two phase Boiling Heat Transfer written by Chang-Ho Choi and published by . This book was released on 2013 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal oxide nanocrystals have attracted significant interests due to their unique chemical, physical, and electrical properties which depend on their size and structure. In this study, a continuous flow microreactor system was employed to synthesize metal oxide nanocrystals in aqueous solution. Assembly of nanocrystals is considered one of the most promising approaches to design nano-, microstructures, and complex mesoscopic architectures. A variety of strategies to induce nanocrystal assembly have been reported, including directed assembly methods that apply external forces to fabricate assembled structures. In this study ZnO nanocrystals were synthesized in an aqueous solution using a continuous flow microreactor. The growth mechanism and stability of ZnO nanocrystals were studied by varying the pH and flow conditions of the aqueous solution. It was found that convective fluid flow from Dean vortices in a winding microcapillary tube could be used for the assembly of ZnO nanocrystals. The ZnO nanocrystal assemblies formed three-dimensional mesoporous structures of different shapes including a tactoid, a retangle and a sphere. The assembly results from a competing interaction between electrostatic forces caused by surface charge of nanocrystals and collision of nanocrystals associated with Dean vortices. The as synthesized colloidal ZnO nanocrystals or assembly were directly deposited onto a substrate to fabricate ZnO nanostructured surfaces. The rectangular assembly led to flower-like ZnO nanostructured films, while the spherical assembly resulted in amorphous ZnO thin film and vertical ZnO nanowire (NW) arrays. In contrast to the formation of flower structure or amorphous thin film, only colloidal ZnO nanocrystals were used as the building blocks for forming vertical ZnO NW arrays. This study demonstrates the versatility of the microreactor-assisted nanomaterial synthesis and deposition process for the production of nanostrucuturesres with various morphologies by tuning the physical parameters while using the same chemical precursors for the synthesis. ZnO flower structure was coated on a microwick structure to improve the capillary flow. The coated microwick structure showed an enhanced capillary rise, which was attributed to the hydrophilic property and geometrical modification of ZnO nanostructure. Two-phase boiling heat transfer was performed using ZnO nanostructured surfaces. ZnO nanocoating altered the important characteristics including surface roughness and wettability. Hydrophilic nature of the ZnO nanocoating generally enhanced the boiling heat transfer performance, resulting in higher heat transfer coefficient (HTC), higher critical heat flux (CHF), and lower surface superheat comparing to the bare surface. Octahedral SnO and porous NiO films, fabricated by a continuous flow microreactor system, were suggested as potential boiling surfaces for the high porosity and irregularity of their structures.

Book Surfaces and Interfaces of Metal Oxide Thin Films  Multilayers  Nanoparticles and Nano composites

Download or read book Surfaces and Interfaces of Metal Oxide Thin Films Multilayers Nanoparticles and Nano composites written by Alejandro G. Roca and published by Springer. This book was released on 2022-09-22 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general overview and current state of the art of different types of metal oxide nanomaterials, either in nanoparticles or thin film structure. It covers from the development and optimization of different nanofabrication/synthesis techniques for nanostructures which are currently the attention of the research community, the study of the structure and interactions by different characterization techniques of heterostructured materials and the final impact in different applications such as nanotherapy, data storage, super magnets, high-frequency devices. The book’s 13 chapters provide deep insight into the intriguing science of oxide materials and include contributions on novel technologies to fabricate nanomaterials with a broad range of functional properties (semiconducting, magnetic, ferroelectric, thermoelectric, optical, flexible and mechanical). This book is intended to the experts for consolidation of their knowledge but also for students who aim to learn and get basics of nanostructured metal oxides in diverse forms.

Book Solution Processed Metal Oxide Thin Films for Electronic Applications

Download or read book Solution Processed Metal Oxide Thin Films for Electronic Applications written by Zheng Cui and published by Elsevier. This book was released on 2020-06-11 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solution Processed Metal Oxide Thin Films for Electronic Applications discusses the fundamentals of solution processing materials chemistry techniques as they are applied to metal oxide materials systems for key device applications. The book introduces basic information (materials properties, materials synthesis, barriers), discusses ink formulation and solution processing methods, including sol-gel processing, surface functionalization aspects, and presents a comprehensive accounting on the electronic applications of solution processed metal oxide films, including thin film transistors, photovoltaic cells and other electronics devices and circuits. This is an important reference for those interested in oxide electronics, printed electronics, flexible electronics and large-area electronics. Provides in-depth information on solution processing fundamentals, techniques, considerations and barriers combined with key device applications Reviews important device applications, including transistors, light-emitting diodes, and photovoltaic cells Includes an overview of metal oxide materials systems (semiconductors, nanomaterials and thin films), addressing materials synthesis, properties, limitations and surface aspects

Book Surface Chemistry and Material Integration of Metal Oxide Nanocrystals

Download or read book Surface Chemistry and Material Integration of Metal Oxide Nanocrystals written by Vikram Shri Lakhanpal and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal oxide nanocrystals have a variety of chemical, electronic, and optical properties unique not only to their material composition but also to their size and shape. Control and tunability over these physical parameters can be achieved through colloidal synthesis. In this process, small nuclei form in a heated mixture and long organic molecules known as ligands, which are typically amines or carboxylates, regulate their growth. These ligands also provide long term stability to the nanocrystals when dispersed in solution, as their bulky chains prevent the particles from aggregating. However, many of the properties that make nanocrystals so intriguing involve interaction with their surfaces, which necessitates the removal of the ligands. A variety of methods for ligand stripping have been explored, all with the goal of obtaining ligand-free nanocrystals that retain their properties in dispersions that are stable long enough to combine with other materials, such as polymers, or to process into a functional device, such as a film or coating. In this dissertation, I relate my work during my PhD in various methods of ligand stripping and nanocrystal processing. In particular, I focus on nanocrystalline cerium oxide, a rare-earth metal oxide with a highly reactive surface, and cerium-doped indium oxide, an optically transparent conductor. Cerium oxide nanocrystals are ligand stripped with an organic salt and transferred into dimethylformamide, a polar organic solvent, after which they are mixed with poly(ethylene oxide) to make composite thin films. Protons are generated from water vapor by the cerium oxide surface, turning the films into a proton conducting electrolyte. Cerium-doped indium oxide nanocrystals are stripped with potassium hydroxide in order to transfer them into water, where it is mixed with the conductive polymer PEDOT:PSS in order to create conductive films with enhanced transparency over more opaque films containing just the polymer. Following the mixed results of these projects, I developed and adapted the potassium hydroxide ligand stripping process to a broader range of metal oxide nanocrystals, providing a general method for ligand stripping and transfer into aqueous media

Book Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications

Download or read book Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications written by Rayees Ahmad Zargar and published by John Wiley & Sons. This book was released on 2023-11-07 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: METAL OXIDE NANOCOMPOSITE THIN FILMS FOR OPTOELECTRONIC DEVICE APPLICATIONS The book provides insight into the fundamental aspects, latest research, synthesis route development, preparation, and future applications of metal oxide nanocomposite thin films. The fabrication of thin film-based materials is important to the future production of safe, efficient, and affordable energy as the devices convert sunlight into electricity. Thin film devices allow excellent interface engineering for high-performance printable solar cells as their structures are highly reliable and stand-alone systems can provide the required megawatts. They have been used as power sources in solar home systems, remote buildings, water pumping, megawatt-scale power plants, satellites, communications, and space vehicles. Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications covers the basics of advanced nanometal oxide-based materials, their synthesis, characterization, and applications, and all the updated information on optoelectronics. Topics discussed include the implications of metal oxide thin films, which are critical for device fabrications. It provides updated information on the economic aspect and toxicity, with great focus paid to display applications, and covers some core areas of nanotechnology, which are particularly concerned with optoelectronics and the available technologies. The book concludes with insights into the role of nanotechnology and the physics behind photovoltaics. Audience The book will be an important volume for electronics and electrical engineers, nanotechnologists, materials scientists, inorganic chemists in academic research, and those in industries, exploring the applications of nanoparticles in semiconductors, power electronics, and more.

Book Metal Oxide Nanocomposites

Download or read book Metal Oxide Nanocomposites written by B. Raneesh and published by John Wiley & Sons. This book was released on 2021-02-17 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Nanocomposites: Synthesis and Applications summarizes many of the recent research accomplishments in the area of metal oxide-based nanocomposites. This book focussing on the following topics: Nanocomposites preparation and characterization of metal oxide nanocomposites; synthesis of core/shell metal oxide nanocomposites; multilayer thin films; sequential assembly of nanocomposite materials; semiconducting polymer metal oxide nanocomposites; graphene-based metal and metal oxide nanocomposites; carbon nanotube–metal–oxide nanocomposites; silicon mixed oxide nanocomposites; gas semiconducting sensors based on metal oxide nanocomposites; metal ]organic framework nanocomposite for hydrogen production and nanocomposites application towards photovoltaic and photocatalytic.

Book Oxide Thin Films and Nanostructures

Download or read book Oxide Thin Films and Nanostructures written by Falko P. Netzer and published by Oxford University Press. This book was released on 2021 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxide Thin Films and Nanostructures is an interdisciplinary approach to introduce readers to the field of oxide nano-materials, that is oxides of nano-meter size and dimensions. Emphasis is put to differentiate these nanoscale oxide objects from their solid bulk oxide parents and present their properties in a pedagogic way.

Book Metal Oxide Nanostructures Chemistry

Download or read book Metal Oxide Nanostructures Chemistry written by Jean-Pierre Jolivet and published by Oxford University Press. This book was released on 2019-01-04 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This much-anticipated new edition of Jolivet's work builds on the edition published in 2000. It is entirely updated, restructured and increased in content. The book focuses on the formation by techniques of green chemistry of oxide nanoparticles having a technological interest. Jolivet introduces the most recent concepts and modelings such as dynamics of particle growth, ordered aggregation, ionic and electronic interfacial transfers. A general view of the metal hydroxides, oxy-hydroxides and oxides through the periodic table is given, highlighting the influence of the synthesis conditions on crystalline structure, size and morphology of nanoparticles. The formation of aluminum, iron, titanium, manganese and zirconium oxides are specifically studied. These nanomaterials have a special interest in many technological fields such as ceramic powders, catalysis and photocatalysis, colored pigments, polymers, cosmetics and also in some biological or environmental phenomena.

Book Charge Transport in Metal Oxide Nanocrystal based Materials

Download or read book Charge Transport in Metal Oxide Nanocrystal based Materials written by Evan Lars Runnerstrom and published by . This book was released on 2016 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and structure. Charge transport can obviously be taken to mean the conduction of electrons, but it also refers to the motion of ions, such as lithium ions and protons. In many cases, the transport of ions is married to the motion of electrons as well, either through an external electrical circuit, or within the same material in the case of mixed ionic electronic conductors. The collective motion of electrons over short length scales, that is, within single nanocrystals, is also a subject of study as it pertains to plasmonic nanocrystals. Finally, charge transport can also be coupled to or result from the formation of defects in metal oxides. All of these modes of charge transport in metal oxides gain further complexity when considered in nanocrystalline systems, where the introduction of numerous surfaces can change the character of charge transport relative to bulk systems, providing opportunities to exploit new physical phenomena. Part I of this dissertation explores the combination of electronic and ionic transport in electrochromic devices based on nanocrystals. Colloidal chemistry and solution processing are used to fabricate nanocomposites based on electrochromic tin-doped indium oxide (ITO) nanocrystals. The nanocomposites, which are completely synthesized using solution processing, consist of ITO nanocrystals and lithium bis(trifluoromethylsulfonyl)amide (LiTFSI) salt dispersed in a lithium ion-conducting polymer matrix of either poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA). ITO nanocrystals are prepared by colloidal synthetic methods and the nanocrystal surface chemistry is modified to achieve favorable nanocrystal-polymer interactions. Homogeneous solutions containing polymer, ITO nanocrystals, and lithium salt are thus prepared and deposited by spin casting. Characterization by DC electronic measurements, microscopy, and x-ray scattering techniques show that the ITO nanocrystals form a complete, connected electrode within a polymer electrolyte matrix, and that the morphology and properties of the nanocomposites can be manipulated by changing the chemical composition of the deposition solution. Careful application of AC impedance spectroscopy techniques and DC measurements are used to show that the nanocomposites exhibit mixed ionic and electronic conductivity, where electronic charge is transported through the ITO nanocrystal phase, and ionic charge is transported through the polymer matrix phase. Additionally, systematic changes in ionic and electronic conductivity with morphology are measured. The synthetic methods developed here and understanding of charge transport ultimately lead to the fabrication of a solid state nanocomposite electrochromic device based on nanocrystals of ITO and cerium oxide. Part II of this dissertation considers electron transport within individual metal oxide nanocrystals themselves. It primarily examines relationships between synthetic chemistry, doping mechanisms in metal oxides, and the accompanying physics of free carrier scattering within the interior of highly doped metal oxide nanocrystals, with particular mind paid to ITO nanocrystals. Additionally, synthetic methods as well as metal oxide defect chemistry influences the balance between activation and compensation of dopants, which limits the nanocrystals' free carrier concentration. Furthermore, because of ionized impurity scattering of the oscillating electrons by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration and mobilities. In particular, efforts to address these limitations by developing new nanocrystal materials (with careful consideration of structure-property relationships) are described. Synthetic control of nanocrystal shape is also explored. Each of these topics have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. Part II culminates as the defect chemistry of metal oxides is identified as a major factor influencing LSPR and charge transport in doped metal oxide nanocrystals. Aliovalent dopants and oxygen vacancies act as centers for ionized impurity scattering of electrons, and this electronic damping leads to lossy, broadband LSPR with low quality factors, limiting applications that require near field concentration of light. However, the appropriate dopant can mitigate ionized impurity scattering. Herein, the synthesis and characterization of a novel doped metal oxide nanocrystal material, cerium-doped indium oxide (Ce:In2O3) is described. Ce:In2O3 nanocrystals display tunable mid-infrared LSPR with exceptionally narrow line widths and the highest quality factors observed for nanocrystals in this spectral region. Drude model fits to the spectra indicate that a drastic reduction in ionized impurity scattering is responsible for the enhanced quality factors, and high electronic mobilities reaching 33 cm2/Vs are measured optically, well above the optical mobility for ITO nanocrystals. The microscopic mechanisms underlying this enhanced mobility are investigated with density functional theory calculations, which suggest that scattering is reduced because cerium orbitals do not hybridize with the In orbitals that dominate the bottom of the conduction band. Ce doping may also reduce the equilibrium oxygen vacancy concentration, further enhancing mobility. Absorption spectra of single Ce:In2O3 nanocrystals are used to determine the dielectric function, and simulations predict strong near field enhancement of mid-IR light, especially around the vertices of Ce:In2O3 nanocubes. Part III examines how the defect chemistry of metal oxides can be used to manipulate not only electronic transport, but also ionic transport in materials that are relevant for high temperature electrochemistry. Over the past few years, the observation of unexpected but significant proton conductivity in porous, nanocrystalline ceramics has generated substantial scientific interest mirroring the excitement surrounding ionic conduction in other nanostructured or porous materials. Numerous studies, to varying degrees of success, have attempted to describe or control the mechanisms that enable proton motion in nanocrystalline ceramics. Here, colloidally synthesized ceramic nanocrystals of cerium oxide (CeO\textsubscript{2}) and titanium oxide (TiO\textsubscript{2}) are utilized to systematically study how grain size, microporosity, and composition influence proton conduction. By measuring the temperature-dependent impedance of porous thin films of these nanocrystals under dry and wet atmospheres, it was found that both CeO2 and TiO2 display significant proton conductivity at intermediate temperatures between 100C and 350C. Furthermore, oxygen activity strongly impacts proton transport; using oxygen as a carrier gas drastically reduced the proton conductivity by up to 60 times. Together, these results suggest that the most likely source of mobile protons in these systems is dissociative adsorption of water at surface oxygen vacancies, with composition, nanocrystal size, and oxide defect equilibria influencing the surface activity toward this reaction and hence the proton conductivity.

Book Metal Oxide Nanostructures

Download or read book Metal Oxide Nanostructures written by Daniela Nunes and published by Elsevier. This book was released on 2018-11-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Nanostructures: Synthesis, Properties and Applications covers the theoretical and experimental aspects related to design, synthesis, fabrication, processing, structural, morphological, optical and electronic properties on the topic. In addition, it reviews surface functionalization and hybrid materials, focusing on the advantages of these oxide nanostructures. The book concludes with the current and future prospective applications of these materials. Users will find a complete overview of all the important topics related to oxide nanostructures, from the physics of the materials, to its application. Delves into hybrid structured metal oxides and their promising use in the next generation of electronic devices Includes fundamental chapters on synthesis design and the properties of metal oxide nanostructures Provides an in-depth overview of novel applications, including chromogenics, electronics and energy

Book Chemical Solution Synthesis for Materials Design and Thin Film Device Applications

Download or read book Chemical Solution Synthesis for Materials Design and Thin Film Device Applications written by Soumen Das and published by Elsevier. This book was released on 2021-01-09 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing

Book Inorganic Nanoparticles

Download or read book Inorganic Nanoparticles written by Claudia Altavilla and published by CRC Press. This book was released on 2017-12-19 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the various nanomaterials, inorganic nanoparticles are extremely important in modern technologies. They can be easily and cheaply synthesized and mass produced, and for this reason, they can also be more readily integrated into applications. Inorganic Nanoparticles: Synthesis, Applications, and Perspectives presents an overview of these special materials and explores the myriad ways in which they are used. It addresses a wide range of topics, including: Application of nanoparticles in magnetic storage media Use of metal and oxide nanoparticles to improve performance of oxide thin films as conducting media in commercial gas and vapor sensors Advances in semiconductors for light-emitting devices and other areas related to the energy sector, such as solar energy and energy storage devices (fuel cells, rechargeable batteries, etc.) The expanding role of nanosized particles in the field of catalysis, art conservation, and biomedicine The book’s contributors address the growing global interest in the application of inorganic nanoparticles in various technological sectors. Discussing advances in materials, device fabrication, and large-scale production—all of which are urgently required to reduce global energy demands—they cover innovations in areas such as solid-state lighting, detailing how it still offers higher efficiency but higher costs, compared to conventional lighting. They also address the impact of nanotechnology in the biomedical field, focusing on topics such as quantum dots for bioimaging, nanoparticle-based cancer therapy, drug delivery, antibacterial agents, and more. Fills the informational gap on the wide range of applications for inorganic nanoparticles in areas including biomedicine, electronics, storage media, conservation of cultural heritage, optics, textiles, and cosmetics Assembling work from an array of experts at the top of their respective fields, this book delivers a useful analysis of the vast scope of existing and potential applications for inorganic nanoparticles. Versatile as either a professional research resource or textbook, this effective tool elucidates fundamentals and current advances associated with design, characterization, and application development of this promising and ever-evolving device.

Book Synthesis  Properties  and Applications of Oxide Nanomaterials

Download or read book Synthesis Properties and Applications of Oxide Nanomaterials written by José A. Rodriguez and published by John Wiley & Sons. This book was released on 2007-03-30 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current oxide nanomaterials knowledge to draw from and build on Synthesis, Properties, and Applications of Oxide Nanomaterials summarizes the existing knowledge in oxide-based materials research. It gives researchers one comprehensive resource that consolidates general theoretical knowledge alongside practical applications. Organized by topic for easy access, this reference: * Covers the fundamental science, synthesis, characterization, physicochemical properties, and applications of oxide nanomaterials * Explains the fundamental aspects (quantum-mechanical and thermodynamic) that determine the behavior and growth mode of nanostructured oxides * Examines synthetic procedures using top-down and bottom-up fabrication technologies involving liquid-solid or gas-solid transformations * Discusses the sophisticated experimental techniques and state-of-the-art theory used to characterize the structural and electronic properties of nanostructured oxides * Describes applications such as sorbents, sensors, ceramic materials, electrochemical and photochemical devices, and catalysts for reducing environmental pollution, transforming hydrocarbons, and producing hydrogen With its combination of theory and real-world applications plus extensive bibliographic references, Synthesis, Properties, and Applications of Oxide Nanomaterials consolidates a wealth of current, complex information in one volume for practicing chemists, physicists, and materials scientists, and for engineers and researchers in government, industry, and academia. It's also an outstanding reference for graduate students in chemistry, chemical engineering, physics, and materials science.