EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book CO sub 2  Capture from Flue Gas Using Solid Molecular Basket Sorbents

Download or read book CO sub 2 Capture from Flue Gas Using Solid Molecular Basket Sorbents written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO2 from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO2 working capacity of MBS, which can also reduce the cost for the whole CO2 capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO2 with different MBSs for the fundamental understanding of CO2 sorption, which may benefit the development, design and modification of the sorbents and the process.

Book Development of Novel Carbon Sorbents for CO sub 2  Capture

Download or read book Development of Novel Carbon Sorbents for CO sub 2 Capture written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: An innovative, low-cost, and low-energy-consuming carbon dioxide (CO2) capture technology was developed, based on CO2adsorption on a high-capacity and durable carbon sorbent. This report describes the (1) performance of the concept on a bench-scale system; (2) results of parametric tests to determine the optimum operating conditions; (3) results of the testing with a flue gas from coal-fired boilers; and (4) evaluation of the technical and economic viability of the technology. The process uses a falling bed of carbon sorbent microbeads to separate the flue gas into two streams: a CO2 -lean flue gas stream from which> 90% of the CP2 is removed and a pure stream of CO2 that is ready for compression and sequestration. The carbo sorbent microbeads have several unique properties such as high CO2 capacity, low heat of adsorption and desorption (25 to 28 kJ/mole), mechanically robust, and rapid adsorption and desorption rates. The capture of CO2 from the flue gas is performed at near ambient temperatures in whic the sorbent microbeads flow down by gravity counter-current with the up-flow of the flue gas. The adsorbed CO2 is stripped by heating the CO2-loaded sorbent to - 100°C, in contact with low-pressure ( - 5 psig) steam in a section at the bottom of the adsorber. The regenerated sorben is dehydrated of adsorbed moisture, cooled, and lifted back to the adsorber. The CO2 from the desorber is essentially pure and can be dehydrated, compressed, and transported to a sequestration site. Bench-scale tests using a simulated flue gas showed that the integrated system can be operated to provide> 90% CO2 capture from a 15% CO2 stream in the adsorber and produce> 98% CO2 at the outlet of the stripper. Long-term tests (1,000 cycles) showed that the system can be operated reliably without sorbent agglomeration or attrition. The bench-scale reactor was also operated using a flue gas stream from a coal-fired boil at the University of Toledo campus for about 135 h, comprising 7,000 cycles of adsorption and desorption using the desulfurized flue gas that contained only 4.5% v/v CO2. A capture efficiency of 85 to 95% CO2 was achieved under steady-state conditi ons. The CO2 adsorption capacity did not change significantly during the field test, as determined from the CO2 adsorptio isotherms of fresh and used sorbents. The process is also being tested using the flue gas from a PC-fired power plant at the National Carbon Capture Center (NCCC), Wilsonville, AL. The cost of electricity was calculated for CO2 capture using the carbon sorbent and compared with the no-CO2 capture and CO2 capture with an amine-based system. The increase i the levelized cost of electricity (L-COE) is about 37% for CO2 capture using the carbon sorbent in comparison to 80% for an amine-based system, demonstrating the economic advantage of C capture using the carbon sorbent. The 37% increase in the L-COE corresponds to a cost of capture of $30/ton of CO2, including compression costs, capital cost for the capture system, and increased plant operating and capital costs to make up for reduced plant efficiency. Preliminary sensitivity analyses showed capital costs, pressure drops in the adsorber, and steam requirement for the regenerator are the major variables in determining the cost of CO2 capture. The results indicate that further long-term testing with a flue gas from a pulverized coal fired boiler should be performed to obtain additional data relating to the effects of flue gas contaminants, the ability to reduce pressure drop by using alternate structural packing, and the use of low-cost construction materials.

Book Handbook of Climate Change Mitigation

Download or read book Handbook of Climate Change Mitigation written by Wei-Yin Chen and published by Springer. This book was released on 2012-02-13 with total page 2130 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Climate Change and Societal Issues, Impacts of Climate Change, Energy Conservation, Alternative Energies, Advanced Combustion, Advanced Technologies, and Education and Outreach.

Book Advanced CO2 Capture Technologies

Download or read book Advanced CO2 Capture Technologies written by Shin-ichi Nakao and published by Springer. This book was released on 2019-05-07 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarises the advanced CO2 capture technologies that can be used to reduce greenhouse gas emissions, especially those from large-scale sources, such as power-generation and steel-making plants. Focusing on the fundamental chemistry and chemical processes, as well as advanced technologies, including absorption and adsorption, it also discusses other aspects of the major CO2 capture methods: membrane separation; the basic chemistry and process for CO2 capture; the development of materials and processes; and practical applications, based on the authors’ R&D experience. This book serves as a valuable reference resource for researchers, teachers and students interested in CO2 problems, providing essential information on how to capture CO2 from various types of gases efficiently. It is also of interest to practitioners and academics, as it discusses the performance of the latest technologies applied in large-scale emission sources.

Book Theoretical Screening of Mixed Solid Sorbent for Applications to CO sub 2  Capture Technology

Download or read book Theoretical Screening of Mixed Solid Sorbent for Applications to CO sub 2 Capture Technology written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.

Book Post combustion Carbon Dioxide Capture Materials

Download or read book Post combustion Carbon Dioxide Capture Materials written by Qiang Wang and published by Royal Society of Chemistry. This book was released on 2018-10-22 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inorganic solid adsorbents/sorbents are attractive materials for capturing carbon dioxide (CO2) from flue gases after fossil fuel combustion. Post-combustion Carbon Dioxide Capture Materials introduces the key inorganic materials used as adsorbents/sorbents with specific emphasis on their design, synthesis, characterization, performance, and mechanism. Dedicated chapters cover carbon-based adsorbents, zeolite- and silica-based adsorbents, metal–organic framework (MOF)-based adsorbents, and alkali-metal-carbonate-based adsorbents. The final chapter discusses the practical application aspects of these adsorbents used in carbon dioxide capture from flue gases. Edited and written by world-renowned scientists in each class of the specific material, this book will provide a comprehensive introduction for advanced undergraduates, postgraduates and researchers from both academic and industrial fields wishing to learn about the topic.

Book Evaluation of Solid Sorbents As A Retrofit Technology for CO sub 2  Capture from Coal Fired Power Plants

Download or read book Evaluation of Solid Sorbents As A Retrofit Technology for CO sub 2 Capture from Coal Fired Power Plants written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO2 capture. The project objective was to address the viability and accelerate development of a solid-based CO2 capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO2 capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different field sites. ADA designed and fabricated a slipstream pilot to allow an evaluation of the kinetic behavior of sorbents and provide some flexibility for the physical characteristics of the materials. The design incorporated a transport reactor for the adsorber (co-current reactor) and a fluidized-bed in the regenerator. This combination achieved the sorbent characterization goals and provided an opportunity to evaluate whether the potential cost savings associated with a relatively simple process design could overcome the sacrifices inherent in a co-current separation process. The system was installed at two field sites during the project, Luminant's Martin Lake Steam Electric Station and Xcel Energy's Sherburne County Generating Station (Sherco). Although the system could not maintain continuous 90% CO2 removal with the sorbents evaluated under this program, it was useful to compare the CO2 removal properties of several different sorbents on actual flue gas. One of the supported amine materials, sorbent R, was evaluated at both Martin Lake and Sherco. The 1 kWe pilot was operated in continuous mode as well as batch mode. In continuous mode, the sorbent performance could not overcome the limitations of the co-current adsorbent design. In batch mode, sorbent R was able to remove up to 90% CO2 for several cycles. Approximately 50% of the total removal occurred in the first three feet of the adsorption reactor, which was a transport reactor. During continuous testing at Sherco, CO2 removal decreased to approximately 20% at steady state. The lack of continuous removal was due primarily to the combination of a co-current adsorption system with a fluidized bed for regeneration, a combination which did not provide an adequate driving force to maintain an acceptable working CO2 capacity. In addition, because sorbent R consisted of a polymeric amine coated on a silica substrate, it was believed that the 50% amine loaded resulted in mass diffusion limitations related to the CO2 uptake rate. Th ...

Book Carbon Dioxide Capture from Flue Gas Using Dry  Regenerable Sorbents

Download or read book Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents written by Raghubir P. Gupta and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

Book Pre combustion Carbon Dioxide Capture Materials

Download or read book Pre combustion Carbon Dioxide Capture Materials written by Qiang Wang and published by Royal Society of Chemistry. This book was released on 2018-08-21 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using inorganic solid adsorbents/sorbents is a promising approach for carbon dioxide (CO2) capture and is attracting intense attention from both academic and industrial fields. Pre-combustion Carbon Dioxide Capture Materials presents a range of the different inorganic materials that can be used as pre-combustion CO2 adsorbents/sorbents with specific emphasis on their design, synthesis, characterization, performance, and mechanism. Dedicated chapters cover layered double hydroxide (LDH) derived adsorbents, MgO-based adsorbents, CaO-based sorbents and alkali ceramics based sorbents. Edited and written by world-renowned scientists in each class of CO2 capture material, this book will provide a comprehensive introduction for advanced undergraduates, postgraduates and researchers wishing to learn about the topic.

Book Theoretical Screening of Solid Sorbents for CO sub 2  Capture Applications

Download or read book Theoretical Screening of Solid Sorbents for CO sub 2 Capture Applications written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The work reported in this presentation was establishing a theoretical procedure to identify most potential candidates of CO2 solid sorbents from a large solid material databank; and to explore the optimal working conditions for the promised CO2 solid sorbents and provide guidelines to the experimentalists. Our methodology can predict thermodynamic properties of solid materials and their CO2 capture reactions. Single solid may not satisfy the industrial operating conditions as CO2 sorbent, however, by mixing two or more solids, the new formed solid may satisfy the industrial needs. By exploring series of lithium silicates with different Li2O/SiO2 ratio, we found that with decreasing Li2O/SiO2 ratio the corresponding silicate has a lower turnover temperature and vice versa. Compared to pure MgO, the Na2CO3, K2CO3 and CaCO3 promoted MgO sorbent has a higher turnover T. These results provide guidelines to synthesize sorbent materials by mixing different solids with different ratio.

Book Theoretical Calculating the Thermodynamic Properties of Solid Sorbents for CO sub 2  Capture Applications

Download or read book Theoretical Calculating the Thermodynamic Properties of Solid Sorbents for CO sub 2 Capture Applications written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method to several different kinds of solid systems, we demonstrate that our methodology can predict the useful information to help developing CO2 capture Technologies.

Book Engineering Solutions for CO2 Conversion

Download or read book Engineering Solutions for CO2 Conversion written by Tomas Ramirez Reina and published by John Wiley & Sons. This book was released on 2021-07-19 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide that offers a review of the current technologies that tackle CO2 emissions The race to reduce CO2 emissions continues to be an urgent global challenge. "Engineering Solutions for CO2 Conversion" offers a thorough guide to the most current technologies designed to mitigate CO2 emissions ranging from CO2 capture to CO2 utilization approaches. With contributions from an international panel representing a wide range of expertise, this book contains a multidisciplinary toolkit that covers the myriad aspects of CO2 conversion strategies. Comprehensive in scope, it explores the chemical, physical, engineering and economical facets of CO2 conversion. "Engineering Solutions for CO2 Conversion" explores a broad range of topics including linking CFD and process simulations, membranes technologies for efficient CO2 capture-conversion, biogas sweetening technologies, plasma-assisted conversion of CO2, and much more. This important resource: * Addresses a pressing concern of global environmental damage, caused by the greenhouse gases emissions from fossil fuels * Contains a review of the most current developments on the various aspects of CO2 capture and utilization strategies * Incldues information on chemical, physical, engineering and economical facets of CO2 capture and utilization * Offers in-depth insight into materials design, processing characterization, and computer modeling with respect to CO2 capture and conversion Written for catalytic chemists, electrochemists, process engineers, chemical engineers, chemists in industry, photochemists, environmental chemists, theoretical chemists, environmental officers, "Engineering Solutions for CO2 Conversion" provides the most current and expert information on the many aspects and challenges of CO2 conversion.

Book Optimization of Solid Sorbent CO2 Capture and Water Usage Reduction in Advanced Power Generation

Download or read book Optimization of Solid Sorbent CO2 Capture and Water Usage Reduction in Advanced Power Generation written by Qin Chen and published by . This book was released on 2015 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Greenhouse gas emissions and water usage are two major concerns in the power generation sector. Advanced clean coal technologies (i.e., solid sorbent CO2 capture technologies and combined wet/dry cooling system) are promising for future central power generation in order to achieve sustainable, secure, and efficient system performance. This dissertation describes research associated with advanced coal derived clean power generation, from near-term pulverized coal (PC) power plant strategies retrofitted for CO 2 capture, to long-term integrated gasification combined cycle (IGCC) power generation, to co-production IGCC with carbon capture and storage (CCS) co-fueled by coal and biomass.In this study, the post-combustion solid sorbent based CO2 capture system for the PC power plant is optimized for integration in order to minimize plant modifications and the associated downtime. Due to significantly less steam usage in sorbent regeneration, the PC plant with advanced solid sorbent CO2 capture has better performance and lower cost of electricity than the plant using conventional amine scrubbing technology. By employing a combined wet/dry cooling system, the PC plant with CO2 capture reduces water usage significantly, while the performance and water usage are a function of ambient conditions as predicted by a mathematical model, the latter of which is validated by experimental data from the literature.Pre-combustion solid sorbent based CO2 capture technologies used in the IGCC are evaluated by systems analysis and compared to Selexol TM CO2 capture. Compared with the SelexolTM approach, solid sorbent CO2 capture results in a power plant with significantly higher overall plant efficiency and more attractive economics.Computational fluid dynamics (CFD) simulation models were developed for both solid sorbent CO2 capture alone, and combined water gas shift (WGS) and solid sorbent CO2 capture in the IGCC applications. ANSYS FLUENT and User Defined Functions (UDF) were the resources adopted to incorporate the fluid mechanics, heat and mass transfer, water vaporization, adsorption equilibrium and kinetics, and WGS reaction kinetics . The CFD models were validated by experimental data, and applied to commercial size fixed bed reactor designs and simulations. It was found that (1) the CO2 breakthrough time or CO2 loading capacity is independent of reactor geometry as long as the space velocity is constant, (2) the adsorption rate is the rate controlling step for CO2 capture using solid sorbent, and (3) break through occurs before the solid sorbent near the exit of the bed is fully utilized due to bulk transfer of the CO2 in the axial direction. However, a low space velocity can increase the loading of the sorbent. The CFD approach also assists in the design of effective thermal management strategies for the reactor in the case of combined WGS and solid sorbent CO 2 capture.Co-feeding of biomass along with coal and the co-production of H 2 and synthetic fuels in IGCCs is evaluated for future clean coal power generation. It was determined by systems analyses that co-feeding and co-production IGCCs are preferable for renewable energy utilization and energy security, with the co-products being produced at competitive costs.

Book Theoretical Screening of Mixed Solid Sorbents for CO sub 2  Capture

Download or read book Theoretical Screening of Mixed Solid Sorbents for CO sub 2 Capture written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We are establishing a theoretical procedure to identify most potential candidates of CO2 solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; A further objective is to explore the optimal working conditions for the promised CO2 solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

Book Carbon Capture

    Book Details:
  • Author : Jennifer Wilcox
  • Publisher : Springer Science & Business Media
  • Release : 2012-03-28
  • ISBN : 1461422140
  • Pages : 337 pages

Download or read book Carbon Capture written by Jennifer Wilcox and published by Springer Science & Business Media. This book was released on 2012-03-28 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book approaches the energy science sub-field carbon capture with an interdisciplinary discussion based upon fundamental chemical concepts ranging from thermodynamics, combustion, kinetics, mass transfer, material properties, and the relationship between the chemistry and process of carbon capture technologies. Energy science itself is a broad field that spans many disciplines -- policy, mathematics, physical chemistry, chemical engineering, geology, materials science and mineralogy -- and the author has selected the material, as well as end-of-chapter problems and policy discussions, that provide the necessary tools to interested students.