EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Cloud Resolving Modeling of Convective Processes

Download or read book Cloud Resolving Modeling of Convective Processes written by Xiaofan Li and published by Springer. This book was released on 2016-05-17 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an updated and revised second edition of the book presenting new developments in the field of cloud-resolving modeling. The first edition of the book introduces the framework of cloud-resolving model, methodologies for analysis of modeling outputs, and validation of simulations with observations. It details important scientific findings in the aspects of surface rainfall processes, precipitation efficiency, dynamic and thermodynamic processes associated with tropical convection, diurnal variations, radiative and cloud microphysical processes associated with development of cloud clusters, air-sea coupling on convective scales, climate equilibrium states, and remote sensing applications. In additional to the content from the first edition of the book, the second edition of the book contains the new scientific results in the development of convective-stratiform rainfall separation scheme, the analysis of structures of precipitation systems, the thermal effects of doubled carbon dioxide on rainfall, precipitation predictability, and modeling depositional growth of ice crystal. The book will be beneficial both to graduate students and to researchers who do cloud, mesoscale and global modeling.

Book Physical Processes in Clouds and Cloud Modeling

Download or read book Physical Processes in Clouds and Cloud Modeling written by Alexander P. Khain and published by Cambridge University Press. This book was released on 2018-07-05 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive analysis of modern theories of cloud microphysical processes and their representation in numerical cloud models.

Book Mean state Acceleration of Cloud resolving Models and Large Eddy Simulations

Download or read book Mean state Acceleration of Cloud resolving Models and Large Eddy Simulations written by and published by . This book was released on 2015 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this study, large eddy simulations and cloud-resolving models (CRMs) are routinely used to simulate boundary layer and deep convective cloud processes, aid in the development of moist physical parameterization for global models, study cloud-climate feedbacks and cloud-aerosol interaction, and as the heart of superparameterized climate models. These models are computationally demanding, placing practical constraints on their use in these applications, especially for long, climate-relevant simulations. In many situations, the horizontal-mean atmospheric structure evolves slowly compared to the turnover time of the most energetic turbulent eddies. We develop a simple scheme to reduce this time scale separation to accelerate the evolution of the mean state. Using this approach we are able to accelerate the model evolution by a factor of 2-16 or more in idealized stratocumulus, shallow and deep cumulus convection without substantial loss of accuracy in simulating mean cloud statistics and their sensitivity to climate change perturbations. As a culminating test, we apply this technique to accelerate the embedded CRMs in the Superparameterized Community Atmosphere Model by a factor of 2, thereby showing that the method is robust and stable to realistic perturbations across spatial and temporal scales typical in a GCM.

Book Current Trends in the Representation of Physical Processes in Weather and Climate Models

Download or read book Current Trends in the Representation of Physical Processes in Weather and Climate Models written by David A. Randall and published by Springer. This book was released on 2019-01-31 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the development of physical parameterization over the last 2 to 3 decades and provides a roadmap for its future development. It covers important physical processes: convection, clouds, radiation, land-surface, and the orographic effect. The improvement of numerical models for predicting weather and climate at a variety of places and times has progressed globally. However, there are still several challenging areas, which need to be addressed with a better understanding of physical processes based on observations, and to subsequently be taken into account by means of improved parameterization. And this is all the more important since models are increasingly being used at higher horizontal and vertical resolutions. Encouraging debate on the cloud-resolving approach or the hybrid approach with parameterized convection and grid-scale cloud microphysics and its impact on models’ intrinsic predictability, the book offers a motivating reference guide for all researchers whose work involves physical parameterization problems and numerical models.

Book Evaluating the Representation and Impact of Convective Processes in the NCAR s Community Climate System Model

Download or read book Evaluating the Representation and Impact of Convective Processes in the NCAR s Community Climate System Model written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Convection and clouds affect atmospheric temperature, moisture and wind fields through the heat of condensation and evaporation and through redistributions of heat, moisture and momentum. Individual clouds have a spatial scale of less than 10 km, much smaller than the grid size of several hundred kilometers used in climate models. Therefore the effects of clouds must be approximated in terms of variables that the model can resolve. Deriving such formulations for convection and clouds has been a major challenge for the climate modeling community due to the lack of observations of cloud and microphysical properties. The objective of our DOE CCPP project is to evaluate and improve the representation of convection schemes developed by PIs in the NCAR (National Center for Atmospheric Research) Community Climate System Model (CCSM) and study its impact on global climate simulations.

Book ARM   Midlatitude Continental Convective Clouds

Download or read book ARM Midlatitude Continental Convective Clouds written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

Book Studies Of Cloud  Convection And Precipitation Processes Using Satellite Observations

Download or read book Studies Of Cloud Convection And Precipitation Processes Using Satellite Observations written by William B Rossow and published by World Scientific. This book was released on 2022-10-26 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clouds, convection and precipitation processes are central components of Earth's weather and climate. They are produced by atmospheric motions across a very wide range of space-time scales from local weather to long-term global climate variation. They feedback on these motions by perturbing the heating/cooling that drive the atmospheric circulation. These processes also perturb the oceanic circulation and land surface properties that affect the atmospheric circulation.Because of the coupling of the atmosphere-ocean-land system across all scales by cloud, convection and precipitation processes, studying their behaviors requires measurements in space-time variations across all these scales simultaneously. Satellite constellations with global coverage and high time resolution offer the ideal platforms for such observations. This book summarizes some of the latest research using combinations of various satellite observations to study these processes and to evaluate their representations in global weather and climate models.Included with this publication are downloadable electronic slides and accompanying notes of each lecture for students, teachers, and public speakers around the world to be better able to understand cloud, convection and precipitation processes.

Book Precipitation Modeling and Quantitative Analysis

Download or read book Precipitation Modeling and Quantitative Analysis written by Xiaofan Li and published by Springer Science & Business Media. This book was released on 2011-11-03 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book examines surface rainfall processes through cloud-resolving modeling and quantitative analysis of surface rainfall budget and summarizes modeling and analysis results in recent seven years. The book shows validation of precipitation modeling against observations and derives a set of diagnostic precipitation equations. The book provides detailed discussions of the applications of precipitation equations to the examination of effects of sea surface temperature, vertical wind shear, radiation, and ice clouds on torrential rainfall processes in the tropics and mid-latitudes, and to the studies of sensitivity of precipitation modeling to uncertainty of the initial conditions and to the estimate of precipitation efficiency. The book can be used as a text book for graduate students and will be beneficial to researchers and forecasters for precipitation process studies and operational forecasts.

Book Modeling of Atmospheric Chemistry

Download or read book Modeling of Atmospheric Chemistry written by Guy P. Brasseur and published by Cambridge University Press. This book was released on 2017-06-19 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.

Book Mesoscale Convective Processes in the Atmosphere

Download or read book Mesoscale Convective Processes in the Atmosphere written by Robert J. Trapp and published by Cambridge University Press. This book was released on 2013-03-25 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new textbook seeks to promote a deep yet accessible understanding of mesoscale-convective processes in the atmosphere. Mesoscale-convective processes are commonly manifested in the form of thunderstorms, which are fast evolving, inherently hazardous, and can assume a broad range of sizes and severity. Modern explanations of the convective-storm dynamics, and of the related development of tornadoes, damaging 'straight-line' winds and heavy rainfall, are provided. Students and weather professionals will benefit especially from unique chapters devoted to observations and measurements of mesoscale phenomena, mesoscale prediction and predictability, and dynamical feedbacks between mesoscale-convective processes and larger-scale motions.

Book Evaluating the Representation and Impact of Convective Processes in the NCAR u2019 s Community Climate System Model

Download or read book Evaluating the Representation and Impact of Convective Processes in the NCAR u2019 s Community Climate System Model written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Convection and clouds affect atmospheric temperature, moisture and wind fields through the heat of condensation and evaporation and through redistributions of heat, moisture and momentum. Individual clouds have a spatial scale of less than 10 km, much smaller than the grid size of several hundred kilometers used in climate models. Therefore the effects of clouds must be approximated in terms of variables that the model can resolve. Deriving such formulations for convection and clouds has been a major challenge for the climate modeling community due to the lack of observations of cloud and microphysical properties. The objective of our DOE CCPP project is to evaluate and improve the representation of convection schemes developed by PIs in the NCAR (National Center for Atmospheric Research) Community Climate System Model (CCSM) and study its impact on global climate simulations.

Book Fast Processes in Large Scale Atmospheric Models

Download or read book Fast Processes in Large Scale Atmospheric Models written by Yangang Liu and published by John Wiley & Sons. This book was released on 2023-12-27 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving weather and climate prediction with better representation of fast processes in atmospheric models Many atmospheric processes that influence Earth’s weather and climate occur at spatiotemporal scales that are too small to be resolved in large scale models. They must be parameterized, which means approximately representing them by variables that can be resolved by model grids. Fast Processes in Large Scale Atmospheric Models: Progress, Challenges and Opportunities explores ways to better investigate and represent multiple parameterized processes in models and thus improve their ability to make accurate climate and weather predictions. Volume highlights include: Historical development of the parameterization of fast processes in numerical models Different types of major sub-grid processes and their parameterizations Efforts to unify the treatment of individual processes and their interactions Top-down versus bottom-up approaches across multiple scales Measurement techniques, observational studies, and frameworks for model evaluation Emerging challenges, new opportunities, and future research directions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Book Thriving on Our Changing Planet

    Book Details:
  • Author : National Academies of Sciences, Engineering, and Medicine
  • Publisher : National Academies Press
  • Release : 2018-12-20
  • ISBN : 0309467608
  • Pages : 717 pages

Download or read book Thriving on Our Changing Planet written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2018-12-20 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.

Book The Convective Cloud Field Model

    Book Details:
  • Author : Till Mathis Wagner
  • Publisher : LAP Lambert Academic Publishing
  • Release : 2010-03
  • ISBN : 9783838345123
  • Pages : 256 pages

Download or read book The Convective Cloud Field Model written by Till Mathis Wagner and published by LAP Lambert Academic Publishing. This book was released on 2010-03 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: The parameterisation of clouds in global climate models has been recognised for decades as a source of substantial uncertainty concerning the estimates of climate variability and sensitivity. The IPCC AR4 lists convective clouds as one of the major problems in global climate modeling. Precipitation remains one of the least reliable variables in climate models and extreme precipitation is especially problematic, being highly sensitive to the parameterisation of convection. A realistic treatment of the physical processes associated with convective clouds is of great importance for many physical processes in global climate models. Convection largely controls the vertical transport of moisture, chemical tracers, energy and momentum. This work addresses the convection problem through presenting a convection parameterisation that describes a whole spectrum of characteristically different convective clouds. Each different cloud type is modeled with more detail, including microphysical processes, than in currently employed parameterisations. The Sensitivity to anthropogenic influence due to increased aerosol is tested to estimate the possible strength and importance of these effects.

Book Convective precipitation simulated with ICON over heterogeneous surfaces in dependence on model and land surface resolution

Download or read book Convective precipitation simulated with ICON over heterogeneous surfaces in dependence on model and land surface resolution written by Singh, Shweta and published by KIT Scientific Publishing. This book was released on 2021-08-16 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: The impact of land-surface properties like vegetation, soil type, soil moisture, and the orography on the atmosphere is manifold. These features determine the evolution of the atmospheric boundary layer, convective conditions, cloud evolution and precipitation. The impact of model grid spacing and land-surface resolution on convective precipitation over heterogeneous surfaces is investigated using ICOsahedral Nonhydrostatic (ICON) simulations within the framework of the HD(CP)2 project.

Book Shallow Clouds  Water Vapor  Circulation  and Climate Sensitivity

Download or read book Shallow Clouds Water Vapor Circulation and Climate Sensitivity written by Robert Pincus and published by Springer. This book was released on 2018-05-29 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a series of overview articles arising from a workshop exploring the links among shallow clouds, water vapor, circulation, and climate sensitivity. It provides a state-of-the art synthesis of understanding about the coupling of clouds and water vapor to the large-scale circulation. The emphasis is on two phenomena, namely the self-aggregation of deep convection and interactions between low clouds and the large-scale environment, with direct links to the sensitivity of climate to radiative perturbations. Each subject is approached using simulations, observations, and synthesizing theory; particular attention is paid to opportunities offered by new remote-sensing technologies, some still prospective. The collection provides a thorough grounding in topics representing one of the World Climate Research Program’s Grand Challenges. Previously published in Surveys in Geophysics, Volume 38, Issue 6, 2017 The aritcles “Observing Convective Aggregation”, “An Observational View of Relationships Between Moisture Aggregation, Cloud, and Radiative Heating Profiles”, “Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations”, “A Survey of Precipitation-Induced Atmospheric Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment”, “Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review”, “Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review”, “Structure and Dynamical Influence of Water Vapor in the Lower Tropical Troposphere”, “Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles”, “Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors”, and “EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation” are available as open access articles under a CC BY 4.0 license at link.springer.com.

Book Evaluating and Improving Cloud Processes in the Multi Scale Modeling Framework

Download or read book Evaluating and Improving Cloud Processes in the Multi Scale Modeling Framework written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The research performed under this grant was intended to improve the embedded cloud model in the Multi-scale Modeling Framework (MMF) for convective clouds by using a 2-moment microphysics scheme rather than the single moment scheme used in all the MMF runs to date. The technical report and associated documents describe the results of testing the cloud resolving model with fixed boundary conditions and evaluation of model results with data. The overarching conclusion is that such model evaluations are problematic because errors in the forcing fields control the results so strongly that variations in parameterization values cannot be usefully constrained.