EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Chemical Composition and Photochemical Evolution of Limonene Secondary Organic Aerosol Studied Using High Resolution Electrospray Ionization Mass Spectrometry

Download or read book Chemical Composition and Photochemical Evolution of Limonene Secondary Organic Aerosol Studied Using High Resolution Electrospray Ionization Mass Spectrometry written by Adam Patrick Bateman and published by . This book was released on 2011 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic aerosols comprise hundreds, if not thousands, of distinct chemical compounds. Traditional analytical techniques for analysis of chemical composition lack the ability to completely characterize complex mixtures such as organic aerosol. Until recently, the best available methods could only provide information on selected aerosol compounds, on selected groups of compounds, or on sample-averaged elemental ratios. Such experimental limitations posed significant barriers to understanding the detailed chemical composition of organic aerosols and its atmospheric evolution. The unique HR ESI-MS methods developed in this research are able to not only characterize the organic aerosols average elemental ratios, but also simultaneously obtain information about hundreds or even thousands of individual compounds in organic aerosols. One of the key achievements of this work was the development of new methods for classification of individual compounds in organic aerosols by their functional groups using reactive HR ESI-MS. This contribution made it possible to track organic aerosols throughout their atmospheric evolution via functional group composition and average elemental ratios while still retaining the chemical composition of each individual compound. Other important scientific advances described in this thesis include: complete characterization of the chemical composition of limonene SOA as a function of particle size and reaction time; adaptation of PILS (particle-into-liquid sampler) to the HR ESI-MS platform; chemical characterization of the water soluble component of several types of organic aerosols; the effects of photochemical aging on the water soluble component of limonene SOA through characterization of the optical properties coupled with chemical composition; and investigation of photochemistry of carbonyls in model SOA matrices. The research included in this dissertation reviews the development of unique aerosol characterization tools utilizing the facilities at UCI and the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The research project answered important questions regarding organic aerosol formation, evolution, and chemical composition that impact the direct and indirect influences of aerosols on Earth's climate.

Book Composition and Photochemistry of Anthropogenic and Biogenic Organic Aerosols

Download or read book Composition and Photochemistry of Anthropogenic and Biogenic Organic Aerosols written by Sandra Louise Blair and published by . This book was released on 2016 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerosols can substantially impact human health, atmospheric chemistry, and climate. The composition and photochemistry of a variety of anthropogenic and biogenic primary and secondary organic aerosols (POA and SOA) have yet to be fully characterized. The composition of organic aerosols is extremely complex - they contain a variety of highly oxidized, multifunctional, low vapor pressure organic compounds. The primary focus of this thesis is on the molecular characterization of organic aerosols that are not well understood or have not been studied before, such as primary emissions from electronic cigarettes, iron (III) mediated SOA, and photooxidized biodiesel and diesel fuel SOA. Another focus of this dissertation is the effect of direct photochemical aging on the composition of organic aerosol. Direct photolysis experiments were first applied to a system that is known to have a photolabile composition, alpha-pinene ozonolysis SOA, such that characterization of a photochemical effect would be possible to quantify. Photolysis of more complex SOA that have not been studied before, photooxidized biodiesel and diesel fuel SOA, were also investigated in this thesis. Advanced high resolution mass spectrometry techniques were used in the molecular characterization of organic aerosols, including nano-Desorption Electrospray Ionization Mass Spectrometry (nano-DESI) and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR). An additional suite of online instrumentation was used to measure gas-phase composition, particle-phase composition, particle size and concentration, and absorption properties: Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS), Aerosol Mass Spectrometry (ToF-AMS), Scanning Mobility Particle Sizing (SMPS), and UV-vis spectroscopy. The molecular analysis of these aerosols provides valuable insight to the formation and photochemical behavior of unexpected, polymeric, light absorbing, and unique organosulfur species.

Book Formation and Chemical Evolution of Secondary Organic Aerosol from Aqueous phase Reactions of Atmospheric Phenols

Download or read book Formation and Chemical Evolution of Secondary Organic Aerosol from Aqueous phase Reactions of Atmospheric Phenols written by Lu Yu and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Secondary organic aerosol (SOA) is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical and physical processes. Understanding the formation and transformation processes of SOA via aqueous-phase reactions is important for properly presenting its atmospheric evolution pathways in models and for elucidating its climate and health effects. Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the formation and evolution of phenol (C6H6O), guaiacol (C7H8O2; 2-methoxyphenol) and syringol (C8H10O3; 2,6-dimethoxyphenol) and with two major aqueous phase oxidants -- the triplet excited state of an aromatic carbonyl (3C*) and hydroxyl radical (·OH) - and interpret the reaction mechanisms. In addition, given that dissolved organic matter (DOM) is an important component of fog and cloud water and that it can undergo aqueous reactions to form more oxidized, less volatile species, we further investigate the photochemical processing of DOM in fog water to gain insights into the aqueous-phase processing of organic aerosol (OA) in the atmosphere. In Chapter 2, we thoroughly characterize the bulk chemical and molecular compositions of phenolic aqSOA formed at half-life (t[subscript 1/2]), and interpret the formation mechanisms. We find that phenolic aqSOA formed at t[subscript 1/2] is highly oxygenated with atomic oxygen-to-carbon ratio (O/C) in the range of 0.85-1.23. Dimers, higher oligomers (up to hexamers), functionalized monomers and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acids are detected. Compared with ·OH-mediated reactions, reactions mediated by 3C* are faster and produce more oligomers and hydroxylated species at t[subscript1/2]. We also find that aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are an important source of secondary brown carbon in the atmosphere, especially in regions impacted by biomass burning. In Chapter 3, we investigate the chemical evolution of phenolic aqSOA via aqueous-phase reactions on the molecular level and interpret the aging mechanisms. Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation. Functionalization and fragmentation become dominant at later stages, forming a variety of functionalized aromatic and ring-opening products with higher carbon oxidation states. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules. In addition, phenolic aqSOA has a wide range of saturation vapor pressures (C*), varying from 10−20 [mu]g m−3 for functionalized phenolic oligomers to 10 [mu]g m−3 for ring-opening species with number of carbon less than 6. The detection of abundant extremely low volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere. Chapter 3 investigates the molecular transformation with aging based on the characterization of three aqSOA filter samples collected at the defined time intervals of the photoreaction. However, the chemical evolution of aqSOA products with hours of illumination at a higher time resolution is largely unknown. In Chapter 4, we investigate the chemical evolution of aqSOA at a 1-min time resolution based on high-resolution aerosol mass spectrometer (AMS) analysis. This is important for understanding the continuous evolution of phenolic aqSOA with aging as well as for elucidating the formation and transformation of different generations of products. Our results suggest that dimer and higher-order oligomers (trimers, tetramers, etc.) are formed continuously during the first 1-2 hours of photoreaction but show a gradual decrease afterwards. Functionalized derivatives grow at a later time and then gradually decrease. Highly oxidized ring-opening species continuously increase over the course of reactions. Positive matrix factorization (PMF) analysis of the AMS spectra of phenolic aqSOA identifies multiple factors, representing different generations of products. The 1st-generation products include dimers, higher-order oligomers and their oxygenated derivatives. The 2nd-generation products include oxygenated monomeric derivatives. The 3rd-generation products include highly oxidized ring-opening species. In Chapter 5, we investigate the evolution of dissolved organic matter (DOM) in fog water. Our results show that the mass concentration of DOM[subscript OA] (i.e., low-volatility DOM in fog water) is enhanced over the course of illumination, with continuous increase of O/C and atomic nitrogen-to-carbon ratio (N/C). The increase of DOM[subscript OA] is due to the incorporation of oxygen- and nitrogen-containing functional groups into the molecules. The aqueous aging of DOM[subscript OA] can be modeled as a linear combination of the dynamic variations of 3 factors using PMF analysis. Factor 1 is chemically similar to the DOM[subscript OA] before illumination, which is quickly reacted away. Factor 2 is representative of an intermediate component, which is first formed and then transformed, and O/C of Factor 2 is intermediate between that of Factor 1 and Factor 3. Factor 3 represents highly oxidized final products, which is continuously formed during illumination. Fog DOM absorbs significantly in the tropospheric sunlight wavelengths, but this absorption behavior stays almost constant over the course of illumination, despite the significant change in chemical composition.

Book Limonene derived Secondary Organic Aerosol

Download or read book Limonene derived Secondary Organic Aerosol written by Maggie Lynn Walser and published by . This book was released on 2007 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiphase Environmental Chemistry in the Atmosphere

Download or read book Multiphase Environmental Chemistry in the Atmosphere written by Sherri W. Hunt and published by ACS Symposium. This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights new cross-disciplinary advances in aerosol chemistry that involve more than one phase, for example, unique chemical processes occurring on gas-solid and liquid-solid interfaces.

Book Chemical and Physical Studies of Secondary Organic Aerosol Formed from Beta pinene Photooxidation

Download or read book Chemical and Physical Studies of Secondary Organic Aerosol Formed from Beta pinene Photooxidation written by Mehrnaz Sarrafzadeh and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric organic aerosols have a significant impact on climate and human health. However, our understanding of the physical and chemical properties of these aerosols is inadequate, thus their climate and health influences are poorly constrained. In this study, we investigated the secondary organic aerosol (SOA) formation from OH-initiated oxidation of -pinene. The majority of experiments were conducted in the York University smog chamber. The main objective was to identify the gas and particle phase products with an atmospheric pressure chemical ionization mass spectrometer (APCI-MS/MS). A wide variety of products were identified containing various functional groups including alcohol, aldehyde, carboxylic acid, ketone and nitrate. Following the chemical composition characterization of products, the shape, phase state and density of generated particles were determined. Images from a scanning electron microscope (SEM) revealed that SOA particles from -pinene were commonly spherical in shape, and adopted an amorphous semi-solid/liquid state. Additionally, the density was determined for SOA particles generated from -pinene/OH, nopinone/OH and nopinone/NO3 experiments for the first time using a tapered element oscillating microbalance-scanning mobility particle sizer (TEOM-SMPS) method. Our results showed a correlation between the determined particle density and the particle chemical composition of the respective system. This demonstrates that changes in particle density can be indicative of the changes in chemical composition of particles. We also investigated the chemical aging of oxidation products by exposing them to additional OH radicals or ozone. The observed changes in chemical composition of products and additional SOA mass production during OH-induced aging were attributed to further oxidation of gas phase intermediate products. The NOx dependence of SOA formation from -pinene photooxidation was investigated in the York University smog chamber and the Jlich Plant Atmosphere Chamber (JPAC). Consistent with previous NOx studies, SOA yields increased with increasing [NOx] at low-NOx conditions, whereas increasing [NOx] at high-NOx conditions suppressed the SOA yield. This increase was attributed to an increase of OH concentration. After removing the effect of [OH] on SOA yield in the JPAC, SOA yields only decreased with increasing [NOx]. Finally, the formation mechanisms of identified products were probed based on the information acquired throughout our study.

Book Size dependent Molecular level Characterization of Secondary Organic Aerosol from NO3 Initiated    carene Oxidation Using Nanospray Desorption Electrospray Ionization High resolution Mass Spectrometry

Download or read book Size dependent Molecular level Characterization of Secondary Organic Aerosol from NO3 Initiated carene Oxidation Using Nanospray Desorption Electrospray Ionization High resolution Mass Spectrometry written by and published by . This book was released on 2015 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effect of Environmental Conditions on Composition and Photochemistry of Secondary Organic Aerosols

Download or read book Effect of Environmental Conditions on Composition and Photochemistry of Secondary Organic Aerosols written by Mallory Lynn Hinks and published by . This book was released on 2017 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric aerosols represent one of the greatest uncertainties in predicting the Earth's future climate. Secondary organic aerosols (SOA) are particularly complicated because they are highly susceptible to change upon exposure to different conditions, such as varying temperatures and relative humidities (RHs), sunlight, and different atmospheric pollutants. The goal of this work was to increase our understanding of the contribution of SOA to the Earth's radiation budget by exploring how different environmental conditions can affect aerosol properties and processes.The first project investigated the effect of viscosity on photochemical kinetics of probe molecules embedded in laboratory-generated SOA. Temperature and RH of the system were varied independently to adjust the viscosity of the SOA and the samples were irradiated. At lower temperatures and humidities both systems exhibited lower photoreaction rates, suggesting that increased viscosity hinders the motion of the molecules in the SOA slowing down their photochemical reactions. This means that molecules trapped inside SOA in cold, dry parts of the atmosphere will photodegrade slower than in warm and humid areas.The next stage of this work was to study the effect of RH on the mass loading and composition of SOA formed from toluene photooxidation. When the RH was increased from 0% to 75%, the yield of toluene SOA made under low NOx conditions decreased by an order of magnitude. High resolution mass spectrometry revealed a significant reduction in the fraction of oligomers present in the SOA made under humid conditions compared to dry conditions. These results suggest that water vapor suppresses oligomer formation in low NOx toluene SOA, reducing aerosol yield. This means that concentrations of toluene SOA in the atmosphere will be dependent on the RH and NOx concentrations.The last stage of this work investigated the interaction between SOA and ammonia. SOA made from toluene, n-hexadecane, or limonene in a chamber was exposed to gaseous ammonia while the mass loading and composition was monitored. These experiments indicated that ammonia could be taken up into SOA, leaving less ammonia in the atmosphere to neutralize atmospheric acids. This leads to a reduction of inorganic aerosols in the atmosphere.

Book Chemistry of Secondary Organic Aerosol

Download or read book Chemistry of Secondary Organic Aerosol written by Lindsay Diana Yee and published by . This book was released on 2013 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The photooxidation of volatile organic compounds (VOCs) in the atmosphere can lead to the formation of secondary organic aerosol (SOA), a major component of fine particulate matter. Improvements to air quality require insight into the many reactive intermediates that lead to SOA formation, of which only a small fraction have been measured at the molecular level. This thesis describes the chemistry of secondary organic aerosol (SOA) formation from several atmospherically relevant hydrocarbon precursors. Photooxidation experiments of methoxyphenol and phenolic compounds and C12 alkanes were conducted in the Caltech Environmental Chamber. These experiments include the first photooxidation studies of these precursors run under sufficiently low NOx levels, such that RO2 + HO2 chemistry dominates, an important chemical regime in the atmosphere. Using online Chemical Ionization Mass Spectrometery (CIMS), key gas-phase intermediates that lead to SOA formation in these systems were identified. With complementary particle-phase analyses, chemical mechanisms elucidating the SOA formation from these compounds are proposed. Three methoxyphenol species (phenol, guaiacol, and syringol) were studied to model potential photooxidation schemes of biomass burning intermediates. SOA yields (ratio of mass of SOA formed to mass of primary organic reacted) exceeding 25% are observed. Aerosol growth is rapid and linear with the organic conversion, consistent with the formation of essentially non-volatile products. Gas and aerosol-phase oxidation products from the guaiacol system show that the chemical mechanism consists of highly oxidized aromatic species in the particle phase. Syringol SOA yields are lower than that of phenol and guaiacol, likely due to unique chemistry dependent on methoxy group position. The photooxidation of several C12 alkanes of varying structure n-dodecane, 2-methylundecane, cyclododecane, and hexylcyclohexane) were run under extended OH exposure to investigate the effect of molecular structure on SOA yields and photochemical aging. Peroxyhemiacetal formation from the reactions of several multifunctional hydroperoxides and aldehyde intermediates was found to be central to organic growth in all systems, and SOA yields increased with cyclic character of the starting hydrocarbon. All of these studies provide direction for future experiments and modeling in order to lessen outstanding discrepancies between predicted and measured SOA.

Book Secondary Organic Aerosol Formation from Radical initiated Reactions of Alkenes

Download or read book Secondary Organic Aerosol Formation from Radical initiated Reactions of Alkenes written by Aiko Matsunaga and published by . This book was released on 2009 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The products and mechanisms of secondary organic aerosol (SOA) formation from reactions of 1-alkenes, internal alkenes, and 2-methyl-1-alkenes with OH radicals in the presence of NO[subscript x] were investigated in an environmental chamber and the results used to develop quantitative models for SOA formation. Aerosol chemical composition was analyzed using a thermal desorption particle beam mass spectrometer (TDPBMS), and multifunctional organic nitrate products were quantified using a high-performance liquid chromatograph with UV-vis detector and identified using the TDPBMS and 1H NMR. The major products observed in reactions of linear alkenes were [beta]-hydroxynitrates, dihydroxynitrates, cyclic hemiacetals, dihydrofurans, and dimers formed from dihydroxycarbonyls. Trihydroxynitrates and trihydroxycarbonyls were observed in reactions of 2-methyl-1-alkenes, in addition to the products listed above. Dimers were not observed, apparently because electron donation by the additional methyl group (compared to linear 1-alkenes) reduces the driving force for hemiacetal formation. The measured yields of [beta]-hydroxynitrates, dihydroxynitrates, and trihydroxynitrates were used to calculate relative ratios of 1.0:1.9:4.3 for forming primary, secondary, and tertiary [beta]-hydroxyalkyl radicals by OH radical addition to the C=C double bond, and branching ratios of 0.12, 0.15, and 0.25 for forming [beta]-hydroxynitrates from reactions of primary, secondary, and tertiary â-hydroxyperoxy radicals with NO. The trends are consistent with expected relative stabilities of [beta]-hydroxyalkyl radicals and ß-hydroxyperoxy radical-NO complexes. It should be possible to use these values to estimate product yields from similar reactions of other alkenes. Comparison of measured and model-calculated SOA yields showed that in some cases the models provide accurate predictions of SOA yields, but that uncertainties in gas- and particle-phase chemistry and gas-particle partitioning can lead to significant discrepancies. More limited environmental chamber studies were also carried out on SOA formation from reactions of linear alkenes with NO3 radicals. The major products were [beta]-hydroxynitrates, [beta]-carbonylnitrates, dihydroxynitrates, and hydroxy- and oxo- dinitrooxytetrahydrofurans, which had not been observed previously. It was observed that isomerization of [delta]-hydroxycarbonyls to cyclic hemiacetals, followed by dehydration to highly reactive dihydrofurans that can be further oxidized, can be important sources of SOA from reactions of alkenes with OH and NO3 radicals.

Book Environmental Chemistry of Aerosols

Download or read book Environmental Chemistry of Aerosols written by Ian Colbeck and published by John Wiley & Sons. This book was released on 2008-03-24 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues such as climate change, stratospheric ozone depletion and air quality. In urban environments, aerosol particles can affect human health through their inhalation. Atmospheric aerosols originate from naturally occurring processes, such as volcanic emissions, sea spray and mineral dust emissions, or from anthropogenic activity such as industry and combustion processes. Aerosols present pathways for reactions, transport, and deposition that would not occur in the gas phase alone. Understanding the ways in which aerosols behave, evolve, and exert these effects requires knowledge of their formation and removal mechanism, transport processes, as well as their physical and chemical characteristics. Motivated by climate change and adverse health effects of traffic-related air pollution, aerosol research has intensified over the past couple of decades, and recent scientific advances offer an improved understanding of the mechanisms and factors controlling the chemistry of atmospheric aerosols. Environmental Chemistry of Aerosols brings together the current state of knowledge of aerosol chemistry, with chapters written by international leaders in the field. It will serve as an authoritative and practical reference for scientists studying the Earth’s atmosphere and as an educational and training resource for both postgraduate students and professional atmospheric scientists.

Book Atmospheric Aerosols

    Book Details:
  • Author : Rekha Kale
  • Publisher : Scitus Academics LLC
  • Release : 2015-03
  • ISBN : 9781681171326
  • Pages : 0 pages

Download or read book Atmospheric Aerosols written by Rekha Kale and published by Scitus Academics LLC. This book was released on 2015-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric Aerosols is a vital problem in current environmental research due to its importance in atmospheric optics, energetics, radiative transfer studies, chemistry, climate, biology and public health. Aerosols can influence the energy balance of the terrestrial atmosphere, the hydrological cycle, atmospheric dynamics and monsoon circulations. Because of the heterogeneous aerosol field with large spatial and temporal variability and reduction in uncertainties in aerosol quantification is a challenging task in atmospheric sciences. Keeping this in view the present study aims to assess the impact of aerosols on coastal Indian station Visakhapatnam and the adjoining Bay of Bengal. An aerosol is a colloid of fine solid particles or liquid droplets, in air or another gas. Aerosols can be natural or not. Examples of natural aerosols are fog, forest exudates and geyser steam.

Book Molecular Characterization and Quantification of Biogenic Secondary Organic Aerosol in Fine Particulate Matter from Confirous Forest Sites Using Liquid Chromatography    electrospray Ionization Mass Spectrometry

Download or read book Molecular Characterization and Quantification of Biogenic Secondary Organic Aerosol in Fine Particulate Matter from Confirous Forest Sites Using Liquid Chromatography electrospray Ionization Mass Spectrometry written by Yadian Gómez González and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chemical Kinetics and Mechanisms of Unsaturated Organic Aerosol Oxidation

Download or read book Chemical Kinetics and Mechanisms of Unsaturated Organic Aerosol Oxidation written by Theodora Nah and published by . This book was released on 2014 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the heterogeneous oxidation of organic particulate matter ("aerosol") is an active area of current research in atmospheric and combustion chemistry. The chemical evolution of organic aerosol is complex and dynamic since it can undergo multiple oxidation reactions with gas phase oxidants to form a mixture of different generations of oxidation products that control the average aerosol mass and volatility. In many of these systems, hydrocarbon free radicals, formed by reaction with gas phase oxidants, play key roles as initiators, propagators and terminators of surface reactions. This dissertation presents a detailed study of the reaction kinetics and mechanisms of the heterogeneous oxidation of unsaturated organic aerosol, and aims to provide new molecular and mechanistic insights into the reaction pathways in heterogeneous organic aerosol oxidation. The heterogeneous oxidation of unsaturated fatty acid (oleic acid C18H34O2, linoleic acid C18H32O2 and linolenic acid C18H30O2) aerosol by hydroxyl (OH) radicals is first studied in Chapter 2 to explore how surface OH addition reactions initiate chain reactions that rapidly transform the chemical composition of unsaturated organic aerosol. Oleic acid, linoleic acid and linolenic acid have the same linear C18 carbon backbone structure with one, two and three C=C double bonds, respectively. By studying carboxylic acids with different numbers of C=C double bonds, the role that multiple reactive sites plays in controlling reaction rates can be observed. The kinetic parameter of interest in these studies is the effective uptake coefficient, defined as the number of particle phase unsaturated fatty acid molecules reacted per OH-particle collision. The effective uptake coefficients for the unsaturated fatty acids are larger than unity, providing clear evidence for particle-phase secondary chain chemistry. The effective uptake coefficients for the unsaturated fatty acids decrease with increasing O2 concentration, indicating that O2 promotes chain termination in the unsaturated fatty acid reactions. The kinetics and products of squalene (a C30 branched alkene with 6 C=C double bonds) oxidation are compared to that of the unsaturated fatty acids in Chapters 3 and 4 to understand how molecular structure and chemical functionality influence reaction rates and mechanisms. The squalene effective uptake coefficient, which is also larger than one, is smaller than that of linoleic acid and linolenic acid despite the larger number of C=C double bonds in squalene. In contrast to the unsaturated fatty acids, the squalene effective uptake coefficient increases with O2 concentration, indicating that O2 promotes chain propagation in the squalene reaction. Elemental and product analysis of squalene aerosol shows that O2 promotes particle volatilization in the squalene reaction, suggesting that fragmentation reactions are important when O2 is present in the OH oxidation of branched unsaturated organic aerosol. In contrast, elemental and product analysis of linoleic acid aerosol shows that O2 does not influence the rate of particle volatilization in the linoleic acid reaction, suggesting that O2 does not alter the relative importance of fragmentation reactions in the OH oxidation of linear unsaturated organic aerosol. Lastly, depending on the aerosol phase (e.g. solid and semi-solid) and the timescale for homogeneous mixing within the aerosol particle, the chemical composition may vary spatially within an aerosol particle. This necessitates the need for new techniques to characterize the interfacial chemical composition of aerosol particles. In the last portion of the dissertation, direct analysis in real time mass spectrometry (DART-MS) is used to analyze the surface chemical composition of nanometer-sized organic aerosol particles in real time at atmospheric pressure. By introducing a stream of aerosol particles in between the DART ionization source and the atmospheric pressure inlet of the mass spectrometer, the aerosol particles are exposed to a thermal flow of helium or nitrogen gas containing some fraction of metastable helium atoms or nitrogen molecules. In this configuration, the molecular constituents of organic aerosol particles are desorbed, ionized and detected with reduced molecular ion fragmentation, allowing for compositional identification. The reaction of ozone with sub-micron oleic acid particles is also measured to demonstrate the ability of DART-MS to identify products and quantify reaction rates in a heterogeneous reaction.

Book Air Quality in the Mexico Megacity

Download or read book Air Quality in the Mexico Megacity written by L. Molina and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, experts in atmospheric sciences, human health, economics, social and political sciences contribute to an integrated assessment of the complex elements needed to structure air quality policy in the 21st century. The analysis is developed through a case study of the Mexico City Metropolitan Area - one of the world's largest megacities in which air pollution grew unchecked for decades. The international research team is led by Luisa T. and Mario J. Molina, Nobel Laureate in Chemistry. Improvements in Mexico City's air quality in the last decade testifies to the power of determined and enlightened policy making, and throws into relief the tough problems that remain to be solved. The volume's first six chapters, including the contributions of over 50 distinguished scholars from Mexico and the US, outline the fundamental areas of knowledge policy makers must accommodate. The message is that only good science and well-chosen technologies can direct the way to corrective regulatory measures; but without strong commitment from government, no amount of science or technology can help.