EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Charged Particles in Oncology

    Book Details:
  • Author : Marco Durante
  • Publisher : Frontiers Media SA
  • Release : 2018-01-31
  • ISBN : 288945391X
  • Pages : 650 pages

Download or read book Charged Particles in Oncology written by Marco Durante and published by Frontiers Media SA. This book was released on 2018-01-31 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-energy charged particles represent a cutting-edge technique in radiation oncology. Protons and carbon ions are used in several centers all over the world for the treatment of different solid tumors. Typical indications are ocular malignancies, tumors of the base of the skull, hepatocellular carcinomas and various sarcomas. The physical characteristics of the charged particles (Bragg peak) allow sparing of much more normal tissues than it is possible using conventional X-rays, and for this reason all pediatric tumors are considered eligible for protontherapy. Ions heavier than protons also display special radiobiological characteristics, which make them effective against radioresistant and hypoxic tumors. On the other hand, protons and ions with high charge (Z) and energy (HZE particles) represent a major risk for human space exploration. The main late effect of radiation exposure is cancer induction, and at the moment the dose limits for astronauts are based on cancer mortality risk. The Mars Science Laboratory (MSL) measured the dose on the route to Mars and on the planet’s surface, suggesting that a human exploration missions will exceed the radiation risk limits. Notwithstanding many studies on carcinogenesis induced by protons and heavy ions, the risk uncertainty remains very high. In this research topic we aim at gathering the experiences and opinions of scientists dealing with high-energy charged particles either for cancer treatment or for space radiation protection. Clinical results with protons and heavy ions, as well as research in medical physics and pre-clinical radiobiology are reported. In addition, ground-based and spaceflight studies on the effects of space radiation are included in this book. Particularly relevant for space studies are the clinical results on normal tissue complications and second cancers. The eBook nicely demonstrates that particle therapy in oncology and protection of astronauts from space radiation share many common topics, and can learn from each other.

Book Charged Particles in Oncology

Download or read book Charged Particles in Oncology written by and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-energy charged particles represent a cutting-edge technique in radiation oncology. Protons and carbon ions are used in several centers all over the world for the treatment of different solid tumors. Typical indications are ocular malignancies, tumors of the base of the skull, hepatocellular carcinomas and various sarcomas. The physical characteristics of the charged particles (Bragg peak) allow sparing of much more normal tissues than it is possible using conventional X-rays, and for this reason all pediatric tumors are considered eligible for protontherapy. Ions heavier than protons also display special radiobiological characteristics, which make them effective against radioresistant and hypoxic tumors. On the other hand, protons and ions with high charge (Z) and energy (HZE particles) represent a major risk for human space exploration. The main late effect of radiation exposure is cancer induction, and at the moment the dose limits for astronauts are based on cancer mortality risk. The Mars Science Laboratory (MSL) measured the dose on the route to Mars and on the planet's surface, suggesting that a human exploration missions will exceed the radiation risk limits. Notwithstanding many studies on carcinogenesis induced by protons and heavy ions, the risk uncertainty remains very high. In this research topic we aim at gathering the experiences and opinions of scientists dealing with high-energy charged particles either for cancer treatment or for space radiation protection. Clinical results with protons and heavy ions, as well as research in medical physics and pre-clinical radiobiology are reported. In addition, ground-based and spaceflight studies on the effects of space radiation are included in this book. Particularly relevant for space studies are the clinical results on normal tissue complications and second cancers. The eBook nicely demonstrates that particle therapy in oncology and protection of astronauts from space radiation share many common topics, and can learn from each other.

Book Proton and Charged Particle Radiotherapy

Download or read book Proton and Charged Particle Radiotherapy written by Thomas F. De Laney and published by Lippincott Williams & Wilkins. This book was released on 2008 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first comprehensive and practical clinical reference on proton and charged particle radiotherapy. The first half of the book explains the treatment delivery systems used, offers detailed guidance on treatment planning techniques, examines key clinical issues in proton radiotherapy, and reviews recent experience with heavier charged particle radiotherapy. The second half of the book offers "how-to" information on treatment of pediatric tumors, lymphomas, and tumors of the central nervous system, eye, skull base, cervical spine, bone and soft tissue, paranasal sinus, nasal cavity, nasopharynx, oropharynx, oral cavity, salivary glands, prostate, lung, gastrointestinal tract, female reproductive tract, and breast. More than 100 full-color illustrations complement the text.

Book Monte Carlo in Heavy Charged Particle Therapy

Download or read book Monte Carlo in Heavy Charged Particle Therapy written by Pablo Cirrone and published by CRC Press. This book was released on 2023-11-08 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the current difficulties and unsolved problems in the field of particle therapy and, after analysing them, discusses how (and if) innovative Monte Carlo approaches can be used to solve them. Each book chapter is dedicated to a different sub-discipline, including multi-ion treatments, flash-radiotherapy, laser-accelerated beams, nanoparticles effects, binary reactions to enhance radiobiology, and space-related issues. This is the first book able to provide a comprehensive insight into this exciting field and the growing use of Monte Carlo in medical physics. It will be of interest to graduate students in medicine and medical physics, in addition to researchers and clinical staff. Key Features: Explores the exciting and interdisciplinary topic of Monte Carlo in particle therapy and medicine. Addresses common challenges in the field. Edited by an authority on the subject, with chapter contributions from specialists. Pablo Cirrone is a medical physicist and researcher at the Laboratori Nazionali del Sud of INFN, Italy, where he supports and coordinates various experimental groups. Dr. Cirrone is an expert in the use of proton and ion in radiation treatment and of absolute and relative dosimetry in electron, photon and ion beam. He is an expert in the development and test of detectors for medical applications, of the production and use of laser-driven beams for medical and multidisciplinary applications and recipient of the Michael Gotein Award. He is active on many scientific committees and organizes national and international conferences. Giada Petringa is a researcher at the Laboratori Nazionali del Sud of INFN, Italy. Dr. Petringa has a professional experience in the field of Monte Carlo simulations for medical applications, dosimetry, microdosimetry, and diagnostics with conventional and laser-driven proton beams. In 2019 she had a MSCA-IF-2019 (Marie Sklodowska-Curie Actions-Individual Fellowship) grant funded by the European Community in the framework of the H2020 program. She is a member of the Editorial Board of the international journal Physica Medica - European Journal of Medical. She organized more than fifteen international Geant4 Schools. She is an official member of the Geant4 code Collaboration at CERN since 2019. She is a code developer, and she collaborates to maintain two of the official examples of the code.

Book Principles and Practice of Particle Therapy

Download or read book Principles and Practice of Particle Therapy written by Timothy D. Malouff and published by Wiley-Blackwell. This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "While the fundamental physical principles that provide the basis for particle therapy are well established, the practical use of these principles is continually evolving as the use of particle therapy continues to grow. Once a novelty, particle therapy is now widely available in many parts of the world. Proton therapy is now a routine option for many patients, and multiple facilities in different countries are treating patients with carbon ion therapy as data is gathered to determine the best clinical use of this technology. Pharmaceutical improvements have also revitalized neutron beam therapy when used for boron neutron capture therapy (BNCT), joining several fast neutron therapy (FNT) centers around the world. Compared to traditional photon and electron radiation therapy, heavier particles have some desirable physical characteristics that allow for safer and more effective treatments in certain scenarios. Heavier particles such as neutrons, protons, and carbon ions offer increased linear energy transfer (LET) and relative biological effectiveness (RBE). Heavier charged particles have beneficial dosimetric advantages such as decreased distal, lateral, and integral dose, and neutron beams can be used to generate targeted therapeutic secondary particles."--

Book Heavy Particle Radiotherapy

Download or read book Heavy Particle Radiotherapy written by M Raju and published by Academic Press. This book was released on 1980 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heavy Particle Radiotherapy covers the significant advances in the application of radiotherapy to cancer treatment. This book is composed of eight chapters that focus on the performance of several heavy particles. The introductory chapters describe the radiobiological phenomena of interest in radiotherapy and their modifications with increasing linear energy transfer. The remaining chapters discuss the physical aspects, cellular effects, and radiotherapy potential of heavy particles, including neutrons, protons, helium and heavy ions, and negative pions.

Book Proton Therapy Physics

    Book Details:
  • Author : Harald Paganetti
  • Publisher : CRC Press
  • Release : 2016-04-19
  • ISBN : 1439836450
  • Pages : 691 pages

Download or read book Proton Therapy Physics written by Harald Paganetti and published by CRC Press. This book was released on 2016-04-19 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.

Book Proton and Charged Particle Radiotherapy

Download or read book Proton and Charged Particle Radiotherapy written by Thomas F. DeLaney and published by . This book was released on 2015-04-24 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first comprehensive and practical clinical reference on proton and charged particle radiotherapy. The first half of the book explains the treatment delivery systems used, offers detailed guidance on treatment planning techniques, examines key clinical issues in proton radiotherapy, and reviews recent experience with heavier charged particle radiotherapy. The second half of the book offers ""how-to"" information on treatment of pediatric tumors, lymphomas, and tumors of the central nervous system, eye, skull base, cervical spine, bone and soft tissue, paranasal sinus, nasal c.

Book Practical Radiation Oncology Physics E Book

Download or read book Practical Radiation Oncology Physics E Book written by Sonja Dieterich and published by Elsevier Health Sciences. This book was released on 2015-06-24 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perfect for radiation oncologists, medical physicists, and residents in both fields, Practical Radiation Oncology Physics provides a concise and practical summary of the current practice standards in therapeutic medical physics. A companion to the fourth edition of Clinical Radiation Oncology, by Drs. Leonard Gunderson and Joel Tepper, this indispensable guide helps you ensure a current, state-of-the art clinical practice. - Covers key topics such as relative and in-vivo dosimetry, imaging and clinical imaging, stereotactic body radiation therapy, and brachytherapy. - Describes technical aspects and patient-related aspects of current clinical practice. - Offers key practice guideline recommendations from professional societies throughout — including AAPM, ASTRO, ABS, ACR, IAEA, and others. - Includes therapeutic applications of x-rays, gamma rays, electron and charged particle beams, neutrons, and radiation from sealed radionuclide sources, plus the equipment associated with their production, use, measurement, and evaluation. - Features a "For the Physician" box in each chapter, which summarizes the key points with the most impact on the quality and safety of patient care. - Provides a user-friendly appendix with annotated compilations of all relevant recommendation documents. - Medicine eBook is accessible on a variety of devices.

Book Hendee s Radiation Therapy Physics

Download or read book Hendee s Radiation Therapy Physics written by Todd Pawlicki and published by John Wiley & Sons. This book was released on 2016-01-21 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The publication of this fourth edition, more than ten years on from the publication of Radiation Therapy Physics third edition, provides a comprehensive and valuable update to the educational offerings in this field. Led by a new team of highly esteemed authors, building on Dr Hendee’s tradition, Hendee’s Radiation Therapy Physics offers a succinctly written, fully modernised update. Radiation physics has undergone many changes in the past ten years: intensity-modulated radiation therapy (IMRT) has become a routine method of radiation treatment delivery, digital imaging has replaced film-screen imaging for localization and verification, image-guided radiation therapy (IGRT) is frequently used, in many centers proton therapy has become a viable mode of radiation therapy, new approaches have been introduced to radiation therapy quality assurance and safety that focus more on process analysis rather than specific performance testing, and the explosion in patient-and machine-related data has necessitated an increased awareness of the role of informatics in radiation therapy. As such, this edition reflects the huge advances made over the last ten years. This book: Provides state of the art content throughout Contains four brand new chapters; image-guided therapy, proton radiation therapy, radiation therapy informatics, and quality and safety improvement Fully revised and expanded imaging chapter discusses the increased role of digital imaging and computed tomography (CT) simulation The chapter on quality and safety contains content in support of new residency training requirements Includes problem and answer sets for self-test This edition is essential reading for radiation oncologists in training, students of medical physics, medical dosimetry, and anyone interested in radiation therapy physics, quality, and safety.

Book Particle Beam Radiation Therapies for Cancer

Download or read book Particle Beam Radiation Therapies for Cancer written by U. S. Department of Health and Human Services and published by Createspace Independent Pub. This book was released on 2013-05-06 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiotherapy with charged particles can potentially deliver maximal doses while minimizing irradiation of surrounding tissues. It may be more effective or less harmful than other forms of radiotherapy for some cancers. The aim of this Technical Brief was to survey the evidence on particle beam radiotherapy. Most types of cancer radiotherapy use ionizing photon (X-ray or gamma-ray) beams for the local or regional treatment of disease. Ionizing radiation damages the DNA of tumor and healthy cells alike, triggering complex biochemical reactions and eventually resulting in prolonged abnormal cell function and cellular death. Ionizing radiation is harmful to all tissues, malignant or healthy. In clinical practice, lethal tumor doses are not always achievable because of radiation-induced morbidity to normal tissues. Radiation therapists aim to maximize dose (and damage) to the target tumor and minimize radiation-induced morbidity to adjacent healthy tissues. This is generally achieved by targeting the beam to the tumor area through paths that spare nearby critical and radiosensitive anatomic structures; selecting multiple fields that cross in the tumor area through different paths, to avoid overexposing the same healthy tissues; and by partitioning the total dose in fractions (small amounts) over successive sessions. Because healthy tissues recover better and faster than malignant ones, with each radiotherapy session the accumulated cellular damage in the targeted tumor increases, while normal tissues are given the opportunity to repair. An alternative treatment modality is charged particle radiotherapy, which uses beams of protons or other charged particles such as helium, carbon or other ions instead of photons. They deposit most of their energy in the last final millimeters of their trajectory. This results in a sharp and localized peak of dose, known as the Bragg peak. The initial energy of the charged particles determines how deep in the body the Bragg peak will form. The intensity of the beam determines the dose that will be deposited to the tissues. By adjusting the energy of the charged particles and by adjusting the intensity of the beam one can deliver prespecified doses anywhere in the patient's body with high precision. As with photon therapy, the biological effects of charged particle beams increase with radiation dose. Because charged particles interact with tissues in different ways than photons, the same amount of radiation can have more pronounced biologic effects when delivered as charged particles. The Agency for Healthcare Research and Quality (AHRQ) requested a Technical Brief on the role of particle beam radiotherapy for the treatment of cancer conditions. Key Questions include: KQ1: 1.a. What are the different particle beam radiation therapies that have been proposed to be used on cancer? 1.b. What are the theoretical advantages and disadvantages of these therapies compared to other radiation therapies that are currently used for cancer treatment? 1.c. What are the potential safety issues and harms of the use of particle beam radiation therapy? KQ2: 2.a. What instrumentation is needed for particle beam radiation and what is the Food and Drug Administration (FDA) status of this instrumentation? 2.b. What is an estimate of the number of hospitals that currently have the instrumentation or are planning to build instrumentation for these therapies in the US? 2.c. What instrumentation technologies are in development? KQ3: Perform a systematic literature scan on studies on the use and safety of these therapies in cancer, with a synthesis of the following variables: 3.a. Type of cancer and patient eligibility criteria 3.b. Type of radiation, instrumentation and algorithms used 3.c. Study design and size 3.d. Comparator used in comparative studies. 3.e. Length of followup 3.f. Concurrent or prior treatments 3.g. Outcomes measured 3.h. Adverse events, harms and safety issues reported

Book Carbon Ion Radiotherapy

    Book Details:
  • Author : Hirohiko Tsujii
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-25
  • ISBN : 4431544577
  • Pages : 284 pages

Download or read book Carbon Ion Radiotherapy written by Hirohiko Tsujii and published by Springer Science & Business Media. This book was released on 2013-12-25 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as a practical guide for the use of carbon ions in cancer radiotherapy. On the basis of clinical experience with more than 7,000 patients with various types of tumors treated over a period of nearly 20 years at the National Institute of Radiological Sciences, step-by-step procedures and technological development of this modality are highlighted. The book is divided into two sections, the first covering the underlying principles of physics and biology, and the second section is a systematic review by tumor site, concentrating on the role of therapeutic techniques and the pitfalls in treatment planning. Readers will learn of the superior outcomes obtained with carbon-ion therapy for various types of tumors in terms of local control and toxicities. It is essential to understand that the carbon-ion beam is like a two-edged sword: unless it is used properly, it can increase the risk of severe injury to critical organs. In early series of dose-escalation studies, some patients experienced serious adverse effects such as skin ulcers, pneumonitis, intestinal ulcers, and bone necrosis, for which salvage surgery or hospitalization was required. To preclude such detrimental results, the adequacy of therapeutic techniques and dose fractionations was carefully examined in each case. In this way, significant improvements in treatment results have been achieved and major toxicities are no longer observed. With that knowledge, experts in relevant fields expand upon techniques for treatment delivery at each anatomical site, covering indications and optimal treatment planning. With its practical focus, this book will benefit radiation oncologists, medical physicists, medical dosimetrists, radiation therapists, and senior nurses whose work involves radiation therapy, as well as medical oncologists and others who are interested in radiation therapy.

Book Radiation Oncology Physics

Download or read book Radiation Oncology Physics written by International Atomic Energy Agency and published by IAEA. This book was released on 2005 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.

Book New Technologies in Radiation Oncology

Download or read book New Technologies in Radiation Oncology written by Wolfgang C. Schlegel and published by Springer Science & Business Media. This book was released on 2006-01-27 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: - Summarizes the state of the art in the most relevant areas of medical physics and engineering applied to radiation oncology - Covers all relevant areas of the subject in detail, including 3D imaging and image processing, 3D treatment planning, modern treatment techniques, patient positioning, and aspects of verification and quality assurance - Conveys information in a readily understandable way that will appeal to professionals and students with a medical background as well as to newcomers to radiation oncology from the field of physics

Book Stereotactic Body Radiation Therapy

Download or read book Stereotactic Body Radiation Therapy written by Simon S. Lo and published by Springer Science & Business Media. This book was released on 2012-08-28 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stereotactic body radiation therapy (SBRT) has emerged as an important innovative treatment for various primary and metastatic cancers. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.

Book Medical Radiation Dosimetry

    Book Details:
  • Author : Brian J McParland
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1447154037
  • Pages : 643 pages

Download or read book Medical Radiation Dosimetry written by Brian J McParland and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the world's population is exposed to ionising radiation as a consequence of diagnostic or therapeutic medical practice. The optimisation of the resulting radiation absorbed dose received by the patient and the clinical outcome sought, whether diagnostic or therapeutic, demands accuracy in the evaluation of the radiation absorbed doses resulting from such exposures. This requirement arrises primarily from two broadly-encompassing factors: The requirement in radiation oncology for a 5% or less uncertainty in the calculation and measurement of absorbed dose so as to optimise the therapeutic ratio of the probabilities of tumour control and normal tissue complications; and The establishment and further refinement of dose reference levels used in diagnostic radiology and nuclear medicine to minimise the amount of absorbed dose for a required degree of diagnostic benefit. The radiation absorbed dose is the outcome of energetic charged particles decelerating and transferring their kinetic energy to tissue. The calculation of this energy deposition, characterised by the stopping power, is unique in that it is derived entirely from theoretical principles. This dominant role of the associated theory makes its understanding of fundamental to the calculation of the radiation absorbed dose to the patient. The theoretical development of charged particle energy loss recognised in medical physics textbooks is in general limited to basic derivations based upon classical theory, generally a simplified form of the Bohr theory. More advanced descriptions of, for example, the Bethe-Bloch quantum result usually do not go beyond the simple presentation of the result without full explanation of the theoretical development of the theory and consideration of its limitations, its dependencies upon the Born perturbation theory and the various correction factors needed to correct for the failures of that Born theory at higher orders. This is not appropriate for a full understanding of the theory that its importance deserves. The medical radiation physicist should be aware of the details of the theoretical derivations of charged particle energy loss in order to appreciate the levels of accuracy in tabular data provided in reports and the calculation methodologies used in modern Monte Carlo calculations of radiation dosimetry.

Book Biophysical Effects of Cold Atmospheric Plasma on Glial Tumor Cells

Download or read book Biophysical Effects of Cold Atmospheric Plasma on Glial Tumor Cells written by Julia Köritzer and published by Springer. This book was released on 2014-04-21 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cold atmospheric plasma is an auspicious new candidate in cancer treatment. Cold atmospheric plasma (CAP) is a partially ionized gas in which the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules and UV photons. These various compositional elements have the potential to inhibit cancer cell activity whilst doing no harm to healthy cells. Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults; treatment including surgery, radio- and chemotherapy remains palliative for most patients as a cure remains elusive. The successful combination of the standard chemotherapeutic temozolomide (TMZ) and CAP treatment features synergistic effects even in resistant glioma cells. In particular in glioma therapy, CAP could offer an innovative approach allowing specific cancer cell / tumor tissue inhibition without damaging healthy cells. Thus CAP is a promising candidate for combination therapy especially for patients suffering from GBMs showing TMZ resistance.