EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Theoretical Study of Charge Transport in Molecular Junctions

Download or read book Theoretical Study of Charge Transport in Molecular Junctions written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Charge Transport in Molecular Junctions

Download or read book Charge Transport in Molecular Junctions written by Michele Kotiuga and published by . This book was released on 2015 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, we use and develop first-principles methods based on density functional theory (DFT) and beyond to understand and predict charge transport phenomena in the novel class of nanostructured devices: molecular junctions. Molecular junctions, individual molecules contacted to two metallic leads, which can be systematically altered by modifying the chemistry of each component, serve as test beds for the study of transport at the nanoscale. To date, various experimental methods have been designed to reliably assemble and mea- sure transport properties of molecular junctions. Furthermore, theoretical methods built on DFT designed to yield quantitative agreement with these experiments for certain classes of molecular junctions have been developed. In order to gain insight into a broader range of molecular junctions and environmental effects associated with the surrounding solution, this dissertation will employ, explore and extend first-principles DFT calculations coupled with approximate self-energy corrections known to yield quantitative agreement with experiments for certain classes of molecular junctions. To start we examine molecular junctions in which the molecule is strongly hybridized with the leads: a challenging limit for the existing methodology. Using a physically motivated tight-binding model, we find that the experimental trends observed for such molecules can be explained by the presence of a so-called "gateway" state associated with the chemical bond that bridges the molecule and the lead. We discuss the ingredients of a self-energy corrected DFT based approach to quantitatively predict conductance in the presence of these hybridization effects. We also develop and apply an approach to account for the surrounding environment on the conductance, which has been predominantly ignored in past transport calculations due to computational complexity. Many experiments are performed in a solution of non-conducting molecules; far from benign, this solution is known to impact the measured conductance by as much as a factor of two. Here, we show that the dominant effect of the solution stems from nearby molecules binding to the lead surface surrounding the junction and altering the local electrostatics. This effect operates in much the same way adsorbates alter the work function of a surface. We develop a framework which implicitly includes the surrounding molecules through an electrostatic-based lattice model with parameters from DFT calculations, reducing the computational complexity of this problem while retaining predictive power. Our approach for computing environmental effects on charge transport in such junctions will pave the way for a better understanding of the physics of nanoscale devices, which are known to be highly sensitive to their surroundings.

Book Molecular Scale Electronics

Download or read book Molecular Scale Electronics written by Xuefeng Guo and published by Springer. This book was released on 2018-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.

Book Charge Transport in Molecular Junctions with Novel Two dimensional Contacts

Download or read book Charge Transport in Molecular Junctions with Novel Two dimensional Contacts written by Shuhui Tao and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanical Control of Charge Transport and Chemical Reactivity in Molecular Junctions

Download or read book Mechanical Control of Charge Transport and Chemical Reactivity in Molecular Junctions written by Leopoldo Meja̕ Restrepo and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Charge transport plays a critical role in a wide range of molecular processes including photosynthesis, redox catalysis, energy storage, biological signaling, and the operation of molecular electronic devices. Understanding and controlling these key events requires establishing how molecular structure influences charge transport and designing physically realizable strategies to manipulate them. This thesis advances the theory, simulation, and interpretation of charge transport experiments in molecular junctions and identifies novel avenues to use external mechanical stimuli to control chemistry and physics in this nanoscale setting. The reason why we focus on molecular junction experiments is because they enable the manipulation of individual molecules and the characterization of their response to external stimuli such as mechanical forces, bias voltages, and electro-magnetic fields. Such a controllable setting is ideal to establish structure-charge transport relations at the single-molecule limit that can inform and resolve the individual molecular contributions to bulk phenomena. We first demonstrate that conductance can act as a sensitive probe of conformational dynamics during the mechanical pulling of molecular junctions. These advances offer an efficient solution to experimentally monitor conformational dynamics at the single-molecule limit. Next, we bridge molecular conductance with mechanochemistry and investigate how to mechanically onset and electrically monitor chemical reactivity in single molecules. In particular, we demonstrate mechanically controlled association and rupture reactions in molecular junctions and show that simultaneous measurements of force and conductance are able to signal reactive events that cannot be distinguished by force or conductance alone. The computations are based on atomistic molecular dynamics and nonequilibrium Green's functions computations of electron transport. At the methodological level, we clarify the utility of the Landauer equation for computing charge transport across molecular junctions immersed in a thermal environment such as solvent. The Landauer equation is central to the modeling of molecular electronics experiments. However, it supposes that the current is coherent (solely due to quantum tunneling) and does not capture the possible influence of the environment in the net current. We isolate physical conditions that require an analysis beyond Landauer and use them to identify chemical motifs capable of stabilizing coherent, incoherent, and intermediate transport mechanisms. Molecular junction experiments typically record the conductance of thousands of freshly formed junctions and report histograms of conductance events. Here, we construct a microscopic theory of such conductance histograms by merging the theory of force spectroscopy developed in biophysics with molecular conductance. The theory enhances the information that can be extracted from molecular electronics experiments, and can be employed to develop schemes to narrow the width of the histograms as desirable for spectroscopic applications and molecular device design. Further, the theory opens key opportunities to atomistically model the conductance histograms, as needed to bridge the gap between theory and experiments."--Pages viii-ix.

Book Nanoscale Interface for Organic Electronics

Download or read book Nanoscale Interface for Organic Electronics written by Mitsumasa Iwamoto and published by World Scientific. This book was released on 2011 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats the important issues of interface control in organic devices in a wide range of applications that cover from electronics, displays, and sensors to biorelated devices. This book is composed of three parts: Part 1, Nanoscale interface; Part 2, Molecular electronics; Part 3, Polymer electronics.

Book Approach to Control  Protect and Switch Charge Transport Through Molecular Junctions and Atomic Contact

Download or read book Approach to Control Protect and Switch Charge Transport Through Molecular Junctions and Atomic Contact written by Yong Ai and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular electronics has attracted increasing interest in the past decades. Constructing metal/molecules/metal junctions is a basic step towards the investigation of molecular electronics. We have witnessed significant development in both experiment and theory in molecular junctions. This thesis focuses mainly on the study of charge transport through molecular junctions. Conducting polymers and copper filaments were electrochemically deposited with a scanning electrochemical microscope (SECM) configuration between a tip and a substrate electrode. In doing so, we have developed a new way to fabricate atomic contact and molecular junctions, and we have explored the possibility to control, protect and switch these systems.Firstly, SECM, where two microelectrodes are located face-to-face separated by a micrometric gap, has been successfully used for the fabrication of redox-gated conducting polymers junctions, such as PEDOT and PBT. Highly stable and reversible redox-gated nano-junctions were obtained with conductance in the 10-7-10-8 S range in their conducting states. These results, associated with the wire-like growth of the polymer, suggest that the conductance of the entire junction in the conductive state is governed by less than 20 to 100 oligomers.Secondly, to obtain the nano-junctions in a controllable way, a break junction strategy combined with the SECM set up is adopted. A nano-junction could be acquired by pulling the tip away from its initial position. And conductance traces showed that PEDOT junctions can be broken step by step before complete breakdown. Similarly as STM-BJ conductance steps were observed on a PEDOT molecular junction before break down by using SECM-BJ. SECM break junction technique proved to be an efficient way of molecular junction fabrication studies, especially for redox gated polymer molecular junctions. Moreover, a self-terminated strategy is found to be another way to obtain nano-junctions. An external resistance connected to the electrode plays an important role in controlling the size of conducting polymer junctions.PFTQ and PFETQ molecular junctions exhibit well-defined ambipolar transport properties. However, an unbalanced charge transport properties in n- and p- channel for these two polymer junctions was observed when the junctions are in the fiber device scale. In contrast, when molecular junction changes into nano-junction, a balanced n- and p-channel transport property is acquired. We propose that such effect is due to charge transport mechanism changing from diffusive (ohm's law) to ballistic (quantum theory) when the junction size is reduced from fiber devices to nanodevices.High stable Au NPs/ITO electrodes exhibit a well localized surface plasmon (LSP) behavior. These plasmonic substrates have been successfully used to trigger switching of molecular junctions under light irradiation, demonstrating that surface plasmon resonance can induce electrochemical reduction. Such conductance reduction can be attributed to the hot electrons plasmonically generated from gold nanoparticles trapped into the PEDOT junction, resulting in PEDOT being reduced and changed to an insulating state.Finally, copper metallic nanowires were generated using an electrochemical self-terminated method based on SECM configuration. The presence of a few atoms that control the electron transport highlights the formation of metallic nanowires between the asymmetric electrodes. Furthermore, a similar study was performed on mesoporous silica film on ITO used as a substrate electrode. The mesoporous silica films have vertically aligned channels with a diameter of about 3 nm and a thickness of 115 nm, which play a crucial role in protecting the copper filament.

Book Charge Transport in Molecular Junctions with Soft Contacts

Download or read book Charge Transport in Molecular Junctions with Soft Contacts written by Alexander Benjamin Neuhausen and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis describes a novel method to fabricate individually addressable molecular junctions of self-assembled monolayers (SAMs) and presents a series of molecular transport measurements taken with these devices. The results of these experiments are analyzed in terms of a general model applicable across a wide range of temperatures, biases and molecular species. The molecular junctions presented in this work exhibit the desired characteristics of nanoscale resolution, high yield and low device-to-device variation. Soft conductive polymer top contacts virtually eliminate shorts associated with diffusion of metal top contacts. We improve several features of previous soft contact devices and demonstrate an order of magnitude reduction in device area. We implement an inorganic dielectric layer with features defined by e-beam lithography and dry etching. We exchange the aqueous PEDOT:PSS conductive polymer used in prior devices for Aedotron P, a low-viscosity, amphiphilic polymer, allowing incorporation of self-assembled monolayers with either hydrophobic or hydrophilic termination with the same junction geometry and materials. We demonstrate the adaptability of this new design by presenting transport measurements on SAMs composed of alkanethiols with methyl, thiol, carboxyl, and azide terminations. We establish that the observed tunnel-barrier behavior is primarily a function of monolayer thickness, independent of the terminal group's hydrophilicity and present a model of the device conductivity as a product of several transmission coefficients. We investigate the temperature-dependence of transport, unique to polymer-contacted molecular junctions, and show that the behavior can be explained primarily as a function of transmission through the polymer layer. Finally, we study transport through mixed and homogenous monolayers of conjugated species, revealing the limits of Aedotron P as a contact material.

Book Charge Transport in Peptide Molecular Junctions

Download or read book Charge Transport in Peptide Molecular Junctions written by Nahum Bomshtein and published by . This book was released on 2016 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoscience And Technology  A Collection Of Reviews From Nature Journals

Download or read book Nanoscience And Technology A Collection Of Reviews From Nature Journals written by Peter Rodgers and published by World Scientific. This book was released on 2009-08-21 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains 35 review articles on nanoscience and nanotechnology that were first published in Nature Nanotechnology, Nature Materials and a number of other Nature journals. The articles are all written by leading authorities in their field and cover a wide range of areas in nanoscience and technology, from basic research (such as single-molecule devices and new materials) through to applications (in, for example, nanomedicine and data storage).

Book Molecular Electronics

    Book Details:
  • Author : Juan Carlos Cuevas
  • Publisher : World Scientific
  • Release : 2010
  • ISBN : 9814282588
  • Pages : 724 pages

Download or read book Molecular Electronics written by Juan Carlos Cuevas and published by World Scientific. This book was released on 2010 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.

Book Quantum Transport

Download or read book Quantum Transport written by Supriyo Datta and published by Cambridge University Press. This book was released on 2005-06-16 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the conceptual framework underlying the atomistic theory of matter, emphasizing those aspects that relate to current flow. This includes some of the most advanced concepts of non-equilibrium quantum statistical mechanics. No prior acquaintance with quantum mechanics is assumed. Chapter 1 provides a description of quantum transport in elementary terms accessible to a beginner. The book then works its way from hydrogen to nanostructures, with extensive coverage of current flow. The final chapter summarizes the equations for quantum transport with illustrative examples showing how conductors evolve from the atomic to the ohmic regime as they get larger. Many numerical examples are used to provide concrete illustrations and the corresponding Matlab codes can be downloaded from the web. Videostreamed lectures, keyed to specific sections of the book, are also available through the web. This book is primarily aimed at senior and graduate students.

Book Electrocatalysis

    Book Details:
  • Author : Richard C. Alkire
  • Publisher : John Wiley & Sons
  • Release : 2013-12-16
  • ISBN : 3527680454
  • Pages : 315 pages

Download or read book Electrocatalysis written by Richard C. Alkire and published by John Wiley & Sons. This book was released on 2013-12-16 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Catalysts speed up a chemical reaction or allow for reactions to take place that would not otherwise occur. The chemical nature of a catalyst and its structure are crucial for interactions with reaction intermediates. An electrocatalyst is used in an electrochemical reaction, for example in a fuel cell to produce electricity. In this case, reaction rates are also dependent on the electrode potential and the structure of the electrical double-layer. This work provides a valuable overview of this rapidly developing field by focusing on the aspects that drive the research of today and tomorrow. Key topics are discussed by leading experts, making this book a must-have for many scientists of the field with backgrounds in different disciplines, including chemistry, physics, biochemistry, engineering as well as surface and materials science. This book is volume XIV in the series "Advances in Electrochemical Sciences and Engineering".

Book Environmental Control of Charge Transport Through Single Molecule Junctions

Download or read book Environmental Control of Charge Transport Through Single Molecule Junctions written by Brian John Capozzi and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This technique has the potential for application in nano-scale systems beyond single-molecule junctions. These results constitute another step toward the development of single-molecule devices with commercial applications. Finally, the methods presented in this thesis offer further insights into the electronic structure of molecular junctions. We show that we can assess energy-level alignment at metal molecule interfaces– this alignment is a crucial parameter controlling the proper- ties of the interface. We also demonstrate that we can probe large regions ( 2eV) of the transmission function which governs charge transport through the junction. By being able to control level alignment, we are also able to offer preliminary studies on single-molecule junctions in the resonant transport regime. Combined, the results presented in this thesis grant new insights into electron transport at the nanoscale and provide new routes for the development of functional single-molecule devices.

Book Handbook of Materials Modeling

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Book Light Controlled Charge Transport in Molecular Junctions on ITO

Download or read book Light Controlled Charge Transport in Molecular Junctions on ITO written by Hela Sasson and published by . This book was released on 2017 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: