EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Channel Coded Physical layer Network Coding in Wireless Relay Networks

Download or read book Channel Coded Physical layer Network Coding in Wireless Relay Networks written by Xiaokang Wang and published by . This book was released on 2018 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Primer on Physical Layer Network Coding

Download or read book A Primer on Physical Layer Network Coding written by Soung Liew and published by Springer Nature. This book was released on 2022-05-31 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of physical-layer network coding (PNC) was proposed in 2006 for application in wireless networks. Since then it has developed into a subfield of communications and networking with a wide following. This book is a primer on PNC. It is the outcome of a set of lecture notes for a course for beginning graduate students at The Chinese University of Hong Kong. The target audience is expected to have some prior background knowledge in communication theory and wireless communications, but not working knowledge at the research level. Indeed, a goal of this book/course is to allow the reader to gain a deeper appreciation of the various nuances of wireless communications and networking by focusing on problems arising from the study of PNC. Specifically, we introduce the tools and techniques needed to solve problems in PNC, and many of these tools and techniques are drawn from the more general disciplines of signal processing, communications, and networking: PNC is used as a pivot to learn about the fundamentals of signal processing techniques and wireless communications in general. We feel that such a problem-centric approach will give the reader a more in-depth understanding of these disciplines and allow him/her to see first-hand how the techniques of these disciplines can be applied to solve real research problems. As a primer, this book does not cover many advanced materials related to PNC. PNC is an active research field and many new results will no doubt be forthcoming in the near future. We believe that this book will provide a good contextual framework for the interpretation of these advanced results should the reader decide to probe further into the field of PNC.

Book Design and Implementation of Physical Layer Network Coding Protocols

Download or read book Design and Implementation of Physical Layer Network Coding Protocols written by Dumezie K. Maduike and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: There has recently been growing interest in using physical layer network coding techniques to facilitate information transfer in wireless relay networks. The physical layer network coding technique takes advantage of the additive nature of wireless signals by allowing two terminals to transmit simultaneously to the relay node. This technique has several performance benefits, such as improving utilization and throughput of wireless channels and reducing delay. In this thesis, we present an algorithm for joint decoding of two unsynchronized transmitters to a modulo-2 sum of their transmitted messages. We address the problems that arise when the boundaries of the signals do not align with each other and when their phases are not identical. Our approach uses a state-based Viterbi decoding scheme that takes into account the timing offsets between the interfering signals. As a future research plan, we plan to utilize software-defined radios (SDRs) as a testbed to show the practicality of our approach and to verify its performance. Our simulation studies show that the decoder performs well with the only degrading factor being the noise level in the channel.

Book Physical Layer Network Coding for the Multi way Relay Channel

Download or read book Physical Layer Network Coding for the Multi way Relay Channel written by Behnam Hashemitabar and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Wireless networks have received considerable attention recently due to the high user demand for wireless services and the emergence of new applications. This thesis focuses on the problem of information dissemination in a class of wireless networks known as the multi-way relay channel. Physical layer network coding is considered to increase the throughput in these networks. First, an algorithm is proposed that increases the full data exchange throughput by 33% compared to traditional routing. This gain arises from providing common knowledge to users and exploiting this knowledge to restrain some users from transmitting. Second, for complex field network coding, a transmission scheme is designed that ensures the receipt of a QAM constellation at the relay. This requires precoding the user symbols to make all possible combinations distinguishable at the relay. Using this approach, the throughput of data exchange is 1/2 symbol per user per channel use. The error performance of both schemes is derived analytically for AWGN channels.

Book Wireless Physical Layer Network Coding

Download or read book Wireless Physical Layer Network Coding written by Jan Sykora and published by Cambridge University Press. This book was released on 2018-02-15 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover a fresh approach for designing more efficient and cooperative wireless communications networks with this systematic guide. Covering everything from fundamental theory to current research topics, leading researchers describe a new, network-aware coding strategy that exploits the signal interactions that occur in dense wireless networks directly at the waveform level. Using an easy-to-follow, layered structure, this unique text begins with a gentle introduction for those new to the subject, before moving on to explain key information-theoretic principles and establish a consistent framework for wireless physical layer network coding (WPNC) strategies. It provides a detailed treatment of Network Coded Modulation, covers a range of WPNC techniques such as Noisy Network Coding, Compute and Forward, and Hierarchical Decode and Forward, and explains how WPNC can be applied to parametric fading channels, frequency selective channels, and complex stochastic networks. This is essential reading whether you are a researcher, graduate student, or professional engineer.

Book Channel Estimation for Physical Layer Network Coding Systems

Download or read book Channel Estimation for Physical Layer Network Coding Systems written by Feifei Gao and published by Springer. This book was released on 2014-10-15 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performance of the channel estimation strategy and optimal structure of training sequences for each scenario. Besides the analysis of channel estimation strategies, the book also points out the necessity of revisiting other signal processing issues for the PLNC system. Channel Estimation of Physical Layer Network Coding Systems is a valuable resource for researchers and professionals working in wireless communications and networks. Advanced-level students studying computer science and electrical engineering will also find the content helpful.

Book Physical layer Network Coding in Multi way Relay Channels

Download or read book Physical layer Network Coding in Multi way Relay Channels written by Hao Li and published by . This book was released on 2022 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Physical-layer network coding (PNC) is an attractive approach to increasing the network throughput by exploiting the broadcast nature of wireless channels. This thesis focuses on the application of PNC in a class of wireless networks known as multi-way relay channels (MRWC), where multiple users share information through a single relay. The primary objective of the thesis is to develop new uplink and downlink schemes for PNC in MWRC, with the main focus on signal detection and power allocation. First, we propose a novel signal detection scheme for PNC in MWRC from the perspective of sequential multi-user detection. The extraction of the network codes from the superimposed user signals at the relay node is formulated as an under-determined linear system. To solve this problem with low decoding complexity, the proposed method combines successive interference cancellation (SIC) with Babai estimation for regularized integer least squares (ILS). We develop a power allocation scheme to enhance the performance of both SIC and ILS steps, and discuss an optimal user pairing strategy based on the average decoding error probability. The performance of the proposed method improves the relay's capability of extracting network codes from multiple superimposed user signals, as demonstrated by the numerical results. Next, we address the design of power allocation schemes for PNC in downlink MWRC. The power allocation is formulated as a constrained optimization problem, where the aim is to maximize the probability of successfully decoding a chain of network codes, so-called success probability, under a total power constraint when using Babai estimation for signal detection. Three aggregate measures of success probability are considered over the participating user terminals, i.e., arithmetic mean, geometric mean, and maximin, and the solutions are obtained based on the concavity of the related problems. Results demonstrate the effectiveness of the proposed schemes in improving the success probability in the reception of a chain of network codes. Finally, we propose a new power allocation scheme based on the success probability of SIC detection for PNC in uplink MWRC. We develop a generalized expression for the closed-form success probability of the SIC detection at the relay in the case of pulse-amplitude modulation (PAM). A constraint optimization is formulated over this probability subject to the transmit power constraints at the user terminals. We develop an evolutionary particle swarm optimization (PSO) algorithm to solve the problem, whose cost function is relatively complex and not necessarily concave. Results show that the proposed method can improve the quality of network code extraction at the relay"--

Book Parameter Estimation and Tracking in Physical Layer Network Coding

Download or read book Parameter Estimation and Tracking in Physical Layer Network Coding written by Manish Jain and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, there has been a growing interest in improving the performance of the wireless relay networks through the use of Physical Layer Network Coding (PLNC) techniques. The physical layer network coding technique allows two terminals to transmit simultaneously to a relay node and decode the modulo-2 sum of the transmitted bits at the relay. This technique considerably improves performance over Digital Network Coding technique. In this thesis, we will present an algorithm for joint decoding of the modulo-2 sum of bits transmitted from two unsynchronized transmitters at the relay. We shall also address the problems that arise when boundaries of the signals do not align with each other and when the channel parameters are slowly varying and are unknown to the receiver at the relay node. Our approach will first jointly estimate the timing o sets and fading gains of both signals using a known pilot sequence sent by both transmitters in the beginning of the packet and then perform Maximum Likelihood detection of data using a state-based Viterbi decoding scheme that takes into account the timing o sets between the interfering signals. We shall present an algorithm for simultaneously tracking the amplitude and phase of slowly varying wireless channel that will work in conjunction our Maximum Likelihood detection algorithm. Finally, we shall provide extension of our receiver to support antenna diversity. Our results show that the proposed detection algorithm works reasonably well, even with the assumption of timing misalignment. We also demonstrate that the performance of the algorithm is not degraded by amplitude and/or phase mismatch between the users. We further show that the performance of the channel tracking algorithm is close to the ideal case i.e. when the channel estimates are perfectly known. Finally, we demonstrate the performance boost provided by the receiver antenna diversity.

Book Coding for Relay Networks with Parallel Gaussian Channels

Download or read book Coding for Relay Networks with Parallel Gaussian Channels written by Yu-Chih Huang and published by . This book was released on 2013 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wireless relay network consists of multiple source nodes, multiple destination nodes, and possibly many relay nodes in between to facilitate its transmission. It is clear that the performance of such networks highly depends on information forwarding strategies adopted at the relay nodes. This dissertation studies a particular information forwarding strategy called compute-and-forward. Compute-and-forward is a novel paradigm that tries to incorporate the idea of network coding within the physical layer and hence is often referred to as physical layer network coding. The main idea is to exploit the superposition nature of the wireless medium to directly compute or decode functions of transmitted signals at intermediate relays in a network. Thus, the coding performed at the physical layer serves the purpose of error correction as well as permits recovery of functions of transmitted signals. For the bidirectional relaying problem with Gaussian channels, it has been shown by Wilson et al. and Nam et al. that the compute-and-forward paradigm is asymptotically optimal and achieves the capacity region to within 1 bit; however, similar results beyond the memoryless case are still lacking. This is mainly because channels with memory would destroy the lattice structure that is most crucial for the compute-and-forward paradigm. Hence, how to extend compute-and-forward to such channels has been a challenging issue. This motivates this study of the extension of compute-and-forward to channels with memory, such as inter-symbol interference. The bidirectional relaying problem with parallel Gaussian channels is also studied, which is a relevant model for the Gaussian bidirectional channel with inter-symbol interference and that with multiple-input multiple-output channels. Motivated by the recent success of linear finite-field deterministic model, we first investigate the corresponding deterministic parallel bidirectional relay channel and fully characterize its capacity region. Two compute-and-forward schemes are then proposed for the Gaussian model and the capacity region is approximately characterized to within a constant gap. The design of coding schemes for the compute-and-forward paradigm with low decoding complexity is then considered. Based on the separation-based framework proposed previously by Tunali et al., this study proposes a family of constellations that are suitable for the compute-and-forward paradigm. Moreover, by using Chinese remainder theorem, it is shown that the proposed constellations are isomorphic to product fields and therefore can be put into a multilevel coding framework. This study then proposes multilevel coding for the proposed constellations and uses multistage decoding to further reduce decoding complexity. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149620

Book Energy Aware Network Coding in Wireless Networks

Download or read book Energy Aware Network Coding in Wireless Networks written by Xiaomeng Shi (Ph. D.) and published by . This book was released on 2012 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy is one of the most important considerations in designing reliable low-power wireless communication networks. We focus on the problem of energy aware network coding. In particular, we investigate practical energy efficient network code design for wireless body area networks (WBAN). We first consider converge-cast in a star-shaped topology, in which a central base station (BS), or hub, manages and communicates directly with a set of nodes. We then consider a wireless-relay channel, in which a relay node assists in the transmission of data from a source to a destination. This wireless relay channel can be seen as a simplified extended star network, where nodes have relay capabilities. The objective is to investigate the use of network coding in these scenarios, with the goal of achieving reliability under low-energy and lower-power constraints. More specifically, in a star network, we propose a simple network layer protocol, study the mean energy to complete uploads of given packets from the nodes to the BS using a Markov chain model, and show through numerical examples that when reception energy is taken into account, the incorporation of network coding offers reductions in energy use. The amount of achievable gains depends on the number of nodes in the network, the degree of asymmetry in channel conditions experienced by different nodes, and the relative difference between transmitting and receiving power at the nodes. We also demonstrate the compatibility of the proposed scheme with the IEEE 802.15.6 WBAN standard by describing ways of incorporating network coding into systems compliant to the standard. For a wireless relay channel, we explore the strategic use of network coding according to both throughput and energy metrics. In the relay channel, a single source communicates to a single sink through the aid of a half-duplex relay. The fluid flow model is used to describe the case where both the source and the relay are coding, and Markov chain models are proposed to describe packet evolution if only the source or only the relay is coding. Although we do not attempt to explicitly categorize the optimal network coding strategies in the relay channel under different system parameters, we provide a framework for deciding whether and where to code, taking into account of throughput maximization and energy depletion constraints.

Book Distributed Coding for Wireless Cooperative Networks

Download or read book Distributed Coding for Wireless Cooperative Networks written by Atoosa Hatefi and published by . This book was released on 2012 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the rapid growth of wireless technologies, devices and mobile applications, the quest of high throughput and ubiquitous connectivity in wireless communications increases rapidly as well. Relaying is undoubtedly a key concept to provide coverage extension and capacity increase in wireless networks. Network coding, which allows the intermediate nodes to share their computation capabilities in addition to their resource and their power, has grabbed a significant research attention since its inception in information theory. It has become an attractive candidate to bring promising performance improvement, especially in terms of throughput, in relay-based cellular networks. Substantial research efforts are currently focused on theoretical analysis, implementation and evaluation of network coding from a physical layer perspective. The question is, what is the most efficient and practical way to use network coding in wireless relay-based networks, and whether it is beneficial to exploit the broadcast and multiple-access properties of the wireless medium to perform network coding. It is in such a context, that this thesis proceeds. In the first part of the thesis, the problem of Joint Network-Channel Coding (JNCC) for a Multiple Access Relay Channel (MARC) is investigated in the presence of multiple access interferences and for both of the relay operating modes, namely, half-duplex and full-duplex. To this end, three new classes of MARC, referred to as Half-Duplex Semi-Orthogonal MARC (HD-SOMARC), Half-Duplex Non-Orthogonal MARC (HD-NOMARC), and Full-Duplex Non-Orthogonal MARC (FD-NOMARC) have been introduced and studied. The relaying function in all of the classes is based on a Selective Decode-and-Forward (SDF) strategy, which is individually implemented for each source, i.e, the relay forwards only a deterministic function of the error-free decoded messages. For each class, an information-theoretic analysis is conducted, and practical coding and decoding techniques are proposed. The proposed coding schemes, perform very close to the outage limit for both cases of HD-SOMARC and HD-NOMARC. Besides, in the case of HD-NOMARC, the optimal allocation of the transmission time to the relay is considered. It is also verified that exploiting multiple access interferences, either partially or totally, results in considerable gains for MARC compared to the existing interference-avoiding structures, even in the case of single receive antenna. In the second part of the thesis, the network model is extended by considering multiple relays which help multiple sources to communicate with a destination. A new class of Multiple Access Multiple Relay Channel (MAMRC), referred to as Half-Duplex Semi-Orthogonal MAMRC (HD-SOMAMRC) is then proposed and analyzed from both information theoretic and code design perspective. New practical JNCC schemes are proposed, in which binary channel coding and non binary network coding are combined, and they are shown to perform very close to the outage limit. Moreover, the optimal allocation of the transmission time to the sources and relays is considered. Finally, in the third part of the thesis, different ways of implementing cooperation, including practical relaying protocols are investigated for the half-duplex MARC with semi-orthogonal transmission protocol and in the case of JNCC. The hard SDF approach is compared with two Soft Decode and Forward (SoDF) relaying functions: one based on log a posterior probability ratios (LAPPRs) and the other based on Mean Square Error (MSE) estimate. It is then shown that SDF works well in most of the configurations and just in some extreme cases, soft relaying functions (based on LAPPR or MSE estimate) can slightly outperform the hard selective one.

Book Coding Schemes for Physical Layer Network Coding Over a Two Way Relay Channel

Download or read book Coding Schemes for Physical Layer Network Coding Over a Two Way Relay Channel written by Brett Michael Hern and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We consider a two-way relay channel in which two transmitters want to exchange information through a central relay. The relay observes a superposition of the trans- mitted signals from which a function of the transmitted messages is computed for broadcast. We consider the design of codebooks which permit the recovery of a function at the relay and derive information-theoretic bounds on the rates for reliable decoding at the relay. In the spirit of compute-and-forward, we present a multilevel coding scheme that permits reliable computation (or, decoding) of a class of functions at the relay. The function to be decoded is chosen at the relay depending on the channel realization. We define such a class of reliably computable functions for the proposed coding scheme and derive rates that are universally achievable over a set of channel gains when this class of functions is used at the relay. We develop our framework with general modulation formats in mind, but numerical results are presented for the case where each node transmits using 4-ary and 8-ary modulation schemes. Numerical results demonstrate that the flexibility afforded by our proposed scheme permits substantially higher rates than those achievable by always using a fixed function or considering only linear functions over higher order fields. Our numerical results indicate that it is favorable to allow the relay to attempt both compute-and-forward and decode-and-forward decoding. Indeed, either method considered separately is suboptimal for computation over general channels. However, we obtain a converse result when the transmitters are restricted to using identical binary linear codebooks generated uniformly at random. We show that it is impossible for this code ensemble to achieve any rate higher than the maximum of the rates achieved using compute-and-forward and decode-and-forward decoding. Finally, we turn our attention to the design of low density parity check (LDPC) ensembles which can practically achieve these information rates with joint-compute- and-forward message passing decoding. To this end, we construct a class of two-way erasure multiple access channels for which we can exactly characterize the performance of joint-compute-and-forward message passing decoding. We derive the processing rules and a density evolution like analysis for several classes of LDPC ensembles. Utilizing the universally optimal performance of spatially coupled LDPC ensembles with message passing decoding, we show that a single encoder and de- coder with puncturing can achieve the optimal rate region for a range of channel parameters. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151149

Book Design of Network Coding Schemes in Wireless Networks

Download or read book Design of Network Coding Schemes in Wireless Networks written by Zihuai Lin and published by CRC Press. This book was released on 2022-06-23 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a consolidated view of the various network coding techniques to be implemented at the design of the wireless networks for improving its overall performance. It covers multiple sources communicating with multiple destinations via a common relay followed by network coded modulation schemes for multiple access relay channels. Performance of the distributed systems based on distributed convolutional codes with network coded modulation is covered including a two-way relay channel (TWRC). Two MIF protocols are proposed including derivation of signal-to-noise ratio (SNR) and development of threshold of the channel conditions of both. Features: Systematically investigates coding and modulation for wireless relay networks. Discusses how to apply lattice codes in implementing lossless communications and lossy source coding over a network. Focusses on theoretical approach for performance optimization. Includes various network coding strategies for different networks. Reviews relevant existing and ongoing research in optimization along with practical code design. This book aims at Researchers, Professionals and Graduate students in Networking, Communications, Information, Coding Theory, Theoretical Computer Science, Performance Analysis and Resource Optimization, Applied Discrete Mathematics, and Applied Probability.

Book Network Coding at Different Layers in Wireless Networks

Download or read book Network Coding at Different Layers in Wireless Networks written by Yang Qin and published by Springer. This book was released on 2016-05-14 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on how to apply network coding at different layers in wireless networks – including MAC, routing, and TCP – with special focus on cognitive radio networks. It discusses how to select parameters in network coding (e.g., coding field, number of packets involved, redundant information ration) in order to be suitable for the varying wireless environments. The author explores how to deploy network coding in MAC to improve network performance and examine joint network coding with opportunistic routing to improve the successful rate of routing. In regards to TCP and network coding, the author considers transport layer protocol working with network coding to overcome the transmission error rate, particularly with how to use the ACK feedback of TCP to enhance the efficiency of network coding. The book pertains to researchers and postgraduate students, especially whose interests are in opportunistic routing and TCP in cognitive radio networks.

Book Network Coding

Download or read book Network Coding written by Khaldoun Al Agha and published by John Wiley & Sons. This book was released on 2012-12-27 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Network coding, a relatively new area of research, has evolved from the theoretical level to become a tool used to optimize the performance of communication networks – wired, cellular, ad hoc, etc. The idea consists of mixing “packets” of data together when routing them from source to destination. Since network coding increases the network performance, it becomes a tool to enhance the existing protocols and algorithms in a network or for applications such as peer-to-peer and TCP. This book delivers an understanding of network coding and provides a set of studies showing the improvements in security, capacity and performance of fixed and mobile networks. This is increasingly topical as industry is increasingly becoming more reliant upon and applying network coding in multiple applications. Many cases where network coding is used in routing, physical layer, security, flooding, error correction, optimization and relaying are given – all of which are key areas of interest. Network Coding is the ideal resource for university students studying coding, and researchers and practitioners in sectors of all industries where digital communication and its application needs to be correctly understood and implemented. Contents 1. Network Coding: From Theory to Practice, Youghourta Benfattoum, Steven Martin and Khaldoun Al Agha. 2. Fountain Codes and Network Coding for WSNs, Anya Apavatjrut, Claire Goursaud, Katia Jaffrès-Runser and Jean-Marie Gorce. 3. Switched Code for Ad Hoc Networks: Optimizing the Diffusion by Using Network Coding, Nour Kadi and Khaldoun Al Agha. 4. Security by Network Coding, Katia Jaffrès-Runser and Cédric Lauradoux. 5. Security for Network Coding, Marine Minier, Yuanyuan Zhang and Wassim Znaïdi. 6. Random Network Coding and Matroids, Maximilien Gadouleau. 7. Joint Network-Channel Coding for the Semi-Orthogonal MARC: Theoretical Bounds and Practical Design, Atoosa Hatefi, Antoine O. Berthet and Raphael Visoz. 8. Robust Network Coding, Lana Iwaza, Marco Di Renzo and Michel Kieffer. 9. Flow Models and Optimization for Network Coding, Eric Gourdin and Jeremiah Edwards.

Book Network Coding in Relay Networks

Download or read book Network Coding in Relay Networks written by Eduardo Alban and published by VDM Publishing. This book was released on 2008 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transmission over wireless networks presents multiple technical challenges due to noise, interference, fading, power constraints and bandwidth limitation. Different solutions have been propposed to overcome these issues and some of them are treated here. Cooperative diversity has been proposed as an implementation for networks where terminals are restricted to using physical arrays; this technique implements space diversity by creating virtual antennas arrays with cooperating nodes in order to combat multipath fading. Network Coding recently has been presented as a technique to increase the throughput in multicast networks. Most of the work done on the topic considers an error free transmission and few works have taken into account the errors due to the nature of the wireless channel. This thesis proposes the use of network coding over some scenarios in relay networks, in order to obtain diversity. It also addresses some cooperative protocols and their performance in terms of bit error rate. Reliability criteria based on channel information are established for a practical network implementation. In short, we propose a scheme for a wireless network using ideas based on network coding.