EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Engine Modeling and Simulation

Download or read book Engine Modeling and Simulation written by Avinash Kumar Agarwal and published by Springer Nature. This book was released on 2021-12-16 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the simulation and modeling of internal combustion engines. The contents include various aspects of diesel and gasoline engine modeling and simulation such as spray, combustion, ignition, in-cylinder phenomena, emissions, exhaust heat recovery. It also explored engine models and analysis of cylinder bore piston stresses and temperature effects. This book includes recent literature and focuses on current modeling and simulation trends for internal combustion engines. Readers will gain knowledge about engine process simulation and modeling, helpful for the development of efficient and emission-free engines. A few chapters highlight the review of state-of-the-art models for spray, combustion, and emissions, focusing on the theory, models, and their applications from an engine point of view. This volume would be of interest to professionals, post-graduate students involved in alternative fuels, IC engines, engine modeling and simulation, and environmental research.

Book CFD and Engine Modeling

Download or read book CFD and Engine Modeling written by and published by SAE International. This book was released on 1996-01-01 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 1D and Multi D Modeling Techniques for IC Engine Simulation

Download or read book 1D and Multi D Modeling Techniques for IC Engine Simulation written by Angelo Onorati and published by SAE International. This book was released on 2020-04-06 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1D and Multi-D Modeling Techniques for IC Engine Simulation provides a description of the most significant and recent achievements in the field of 1D engine simulation models and coupled 1D-3D modeling techniques, including 0D combustion models, quasi-3D methods and some 3D model applications.

Book An Innovative 3D CFD Approach towards Virtual Development of Internal Combustion Engines

Download or read book An Innovative 3D CFD Approach towards Virtual Development of Internal Combustion Engines written by Marco Chiodi and published by Springer Science & Business Media. This book was released on 2011-03-07 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the engine development process, simulation and predictive programs have continuously gained in reliance. Due to the complexity of future internal combustion engines the application of simulation programs towards a reliable “virtual engine development” is a need that represents one of the greatest challenges. Marco Chiodi presents an innovative 3D-CFD-tool, exclusively dedicated and optimized for the simulation of internal combustion engines. Thanks to improved or newly developed 3D-CFD-models for the description of engine processes, this tool ensures an efficient and reliable calculation also by using coarse 3D-CFD-meshes. Based on this approach the CPU-time can be reduced up to a factor 100 in comparison to traditional 3D-CFD-simulations. In addition an integrated and automatic “evaluation tool” establishes a comprehensive analysis of the relevant engine parameters. Due to the capability of a reliable “virtual development” of full-engines, this fast response 3D-CFD-tool makes a major contribution to the engine development process. Südwestmetall-Förderpreis 2010

Book Analysis of Injection Processes in an Innovative 3D CFD Tool for the Simulation of Internal Combustion Engines

Download or read book Analysis of Injection Processes in an Innovative 3D CFD Tool for the Simulation of Internal Combustion Engines written by Marlene Wentsch and published by Springer. This book was released on 2018-05-16 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the large number of influencing parameters and interactions, the fuel injection and therewith fuel propagation and distribution are among the most complex processes in an internal combustion engine. For this reason, injection is usually the subject to highly detailed numerical modeling, which leads to unacceptably high computing times in the 3D-CFD simulation of a full engine domain. Marlene Wentsch presents a critical analysis, optimization and extension of injection modeling in an innovative, fast response 3D-CFD tool that is exclusively dedicated to the virtual development of internal combustion engines. About the Author Marlene Wentsch works as research associate in the field of 3D-CFD simulations of injection processes at the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart, Germany.

Book CFD Modeling of Complex Chemical Processes

Download or read book CFD Modeling of Complex Chemical Processes written by Li Xi and published by MDPI. This book was released on 2021-09-01 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid dynamics (CFD), which uses numerical analysis to predict and model complex flow behaviors and transport processes, has become a mainstream tool in engineering process research and development. Complex chemical processes often involve coupling between dynamics at vastly different length and time scales, as well as coupling of different physical models. The multiscale and multiphysics nature of those problems calls for delicate modeling approaches. This book showcases recent contributions in this field, from the development of modeling methodology to its application in supporting the design, development, and optimization of engineering processes.

Book Modeling Engine Spray and Combustion Processes

Download or read book Modeling Engine Spray and Combustion Processes written by Gunnar Stiesch and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.

Book Two Stroke Cycle Engine

Download or read book Two Stroke Cycle Engine written by JohnB. Heywood and published by Routledge. This book was released on 2017-11-01 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the two-stroke cycle internal combustion engine, used in compact, lightweight form in everything from motorcycles to chainsaws to outboard motors, and in large sizes for marine propulsion and power generation. It first provides an overview of the principles, characteristics, applications, and history of the two-stroke cycle engine, followed by descriptions and evaluations of various types of models that have been developed to predict aspects of two-stroke engine operation.

Book Final Report  High Resolution CFD and Modeling for Diesel Engine Simulation

Download or read book Final Report High Resolution CFD and Modeling for Diesel Engine Simulation written by and published by . This book was released on 2002 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: This project focused on developing numerical methods for the simulation of large-scale combustion processes. The particular research focused on algorithm development for compressible flows, the development of geometric techniques for dealing with complex geometries, and their application to problems of independent scientific research, for example, the simulation of laser-induced spark ignited mixture.

Book Modeling of Real Fuels and Knock Occurrence for an Effective 3D CFD Virtual Engine Development

Download or read book Modeling of Real Fuels and Knock Occurrence for an Effective 3D CFD Virtual Engine Development written by Francesco Cupo and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: To drastically reduce the emission of greenhouse gases, the development of future internal combustion engines will be strictly linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels). This evolution implies an increase in development complexity, which needs the support of engine 3D-CFD simulations. Francesco Cupo presents approaches to accurately describe fuel characteristics and knock occurrence in SI engines, thus improving the current simulation capability in investigating alternative fuels and innovative combustion processes. The developed models are successfully used to investigate the influence of ethanol-based fuels and water injection strategies on knock occurrence and to conduct a virtual fuel design for and engine operating with the innovative SACI combustion strategy. Contents Detailed description of real fuels Locally-distributed auto-ignition model and knock detection Influence of ethanol-based fuels and water injection on combustion and knock Virtual fuel design for SACI combustion strategy Target Groups Researchers and students in the field of automotive engineering Automotive engineers The Author Francesco Cupo obtained a PhD at the research Institute of Automotive Engineering (IFS) in Stuttgart, Germany. His activity is currently focusing on the design of advanced internal combustion engines and alternative fuels.

Book Turbulent Combustion Modeling

Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Book Advances in Internal Combustion Engine Research

Download or read book Advances in Internal Combustion Engine Research written by Dhananjay Kumar Srivastava and published by Springer. This book was released on 2017-11-29 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses all aspects of advanced engine technologies, and describes the role of alternative fuels and solution-based modeling studies in meeting the increasingly higher standards of the automotive industry. By promoting research into more efficient and environment-friendly combustion technologies, it helps enable researchers to develop higher-power engines with lower fuel consumption, emissions, and noise levels. Over the course of 12 chapters, it covers research in areas such as homogeneous charge compression ignition (HCCI) combustion and control strategies, the use of alternative fuels and additives in combination with new combustion technology and novel approaches to recover the pumping loss in the spark ignition engine. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.

Book Modelling Diesel Combustion

Download or read book Modelling Diesel Combustion written by P. A. Lakshminarayanan and published by Springer Science & Business Media. This book was released on 2010-03-03 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.

Book CFD Modeling of In Cylinder Heat Transfer in Piston Engines

Download or read book CFD Modeling of In Cylinder Heat Transfer in Piston Engines written by Arpan Sircar and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern engines function under extreme conditions of pressure and temperature to deliver high work output at high efficiencies and reduced emissions. These increased demands on today's engines force them to operate at the limits of stability. In-cylinder engine heat transfer modeling is of vital importance for these conditions since small discrepancies in predictions can cause drastic results. Boundary layer heat transfer modeling is equally important since it is one of the main factors which affects engine efficiency. The broad goal of this work is to understand the mechanisms of heat transfer for modern engines and develop predictive models for engine simulation. Current wall heat transfer models are studied in motored flow of a piston/cylinder assembly and a simple spark-ignition (SI) engine which was developed for obtaining experimental data to be used to validate numerical models. Wall heat transfer predictions from exercising these models in both engine configurations guided the choice of employing the Angelberger model in a more complex engine: the Volvo 13L production six-cylinder heavy-duty diesel truck engine. This model was shown to match the experimental pressure trace much better than a constant turbulent Prandtl number model which does not consider the effect of near-wall changes in thermophysical and flow properties due to combusting flows in reciprocating engines. The extreme operating conditions of modern engines render radiative heat transfer a significant mode of energy transfer. Large eddy simulation (LES) of a canonical flow configuration is used to investigate the effect of turbulence-radiation coupling, especially in boundary-layers. Significant alteration of the law-of-the-wall for thermal boundary layers was observed under the influence of radiative heat transfer. Simulation results were used to understand these alterations and a turbulent Prandtl- number-based model was implemented to capture these effects. The broad goal of developing predictive models for engine simulation was realized by the development of a two-zone hybrid URANS/LES model with the turbulent Prandtl-number-based model built into it to account for the effects of radiation. LES of the motored piston/cylinder assembly was performed to assess the behavior of turbulent boundary layers in engines. The developed two-zone model was implemented in OpenFOAM and shown to improve the predictions of boundary layer growth in motored engines, which does not follow the conventional law-of-the-wall. It is expected that this model can be improved to study the effects of turbulence-radiation coupling in boundary layers of fired engines.

Book CFD Modeling of Free Piston Stirling Engines

Download or read book CFD Modeling of Free Piston Stirling Engines written by and published by . This book was released on 2001 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Cfd Simulation of Internal Combustion Engines

Download or read book Cfd Simulation of Internal Combustion Engines written by Abhijeet Vaidya and published by LAP Lambert Academic Publishing. This book was released on 2010-07 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding highly complex nature of flow in an IC engine is essential to optimize its performance. However, the events like reciprocating motion of piston, motion of valves, turbulence generation, spray and mixing lead to a complex flow pattern. CFD is very useful in computing and understanding this complex flow pattern. In this book, all aspects of CFD technique to simulate the mixing of fuel with air in GDI engines are explained. The book covers the governing equations, numerical techniques for solving them, method of analysis of data (in the context of mixing processes) and programming techniques. The book will be useful for professionals who are performing CFD analysis using CFD softwares for thermal systems specifically reciprocating systems like engines, compressors and systems involving sprays, mixing etc. It is also useful for those who are developing CFD tools.

Book CFD Modeling and Simulation in Materials Processing 2018

Download or read book CFD Modeling and Simulation in Materials Processing 2018 written by Laurentiu Nastac and published by Springer. This book was released on 2018-01-10 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection presents contributions on computational fluid dynamics (CFD) modeling and simulation of engineering processes from researchers and engineers involved in the modeling of multiscale and multiphase phenomena in material processing systems. The following processes are covered: Additive Manufacturing (Selective Laser Melting and Laser Powder Bed Fusion); Ironmaking and Steelmaking (Ladle Metallurgical Furnace, EAF, Continuous Casting, Blown Converter, Reheating Furnace, Rotary Hearth Furnace); Degassing; High Pressure Gas Atomization of Liquid Metals; Electroslag Remelting; Electrokinetic Deposition; Friction Stir Welding; Quenching; High Pressure Die Casting; Core Injection Molding; Evaporation of Metals; Investment Casting; Electromagnetic Levitation; Ingot Casting; Casting and Solidification with External Field (electromagnetic stirring and ultrasonic cavitation) Interaction and Microstructure Evolution The collection also covers applications of CFD to engineering processes, and demonstrates how CFD can help scientists and engineers to better understand the fundamentals of engineering processes.