Download or read book Center Manifolds for Semilinear Equations with Non Dense Domain and Applications to Hopf Bifurcation in Age Structured Models written by Pierre Magal and published by American Mathematical Soc.. This book was released on 2009 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several types of differential equations, such as delay differential equations, age-structure models in population dynamics, evolution equations with boundary conditions, can be written as semilinear Cauchy problems with an operator which is not densely defined in its domain. The goal of this paper is to develop a center manifold theory for semilinear Cauchy problems with non-dense domain. Using Liapunov-Perron method and following the techniques of Vanderbauwhede et al. in treating infinite dimensional systems, the authors study the existence and smoothness of center manifolds for semilinear Cauchy problems with non-dense domain. As an application, they use the center manifold theorem to establish a Hopf bifurcation theorem for age structured models.
Download or read book Center Manifolds for Semilinear Equations with Non dense Domain and Applications to Hopf Bifurcation in Age Structured Models written by Pierre Magal and published by American Mathematical Soc.. This book was released on 2009-10-08 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several types of differential equations, such as delay differential equations, age-structure models in population dynamics, evolution equations with boundary conditions, can be written as semilinear Cauchy problems with an operator which is not densely defined in its domain. The goal of this paper is to develop a center manifold theory for semilinear Cauchy problems with non-dense domain. Using Liapunov-Perron method and following the techniques of Vanderbauwhede et al. in treating infinite dimensional systems, the authors study the existence and smoothness of center manifolds for semilinear Cauchy problems with non-dense domain. As an application, they use the center manifold theorem to establish a Hopf bifurcation theorem for age structured models.
Download or read book Infinite Dimensional Dynamical Systems written by John Mallet-Paret and published by Springer Science & Business Media. This book was released on 2012-10-11 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation and applications of new developments of nonlinear analysis and other mathematical theories. Theories of the infinite dimensional dynamical systems have also found more and more important applications in physical, chemical, and life sciences. This book collects 19 papers from 48 invited lecturers to the International Conference on Infinite Dimensional Dynamical Systems held at York University, Toronto, in September of 2008. As the conference was dedicated to Professor George Sell from University of Minnesota on the occasion of his 70th birthday, this collection reflects the pioneering work and influence of Professor Sell in a few core areas of dynamical systems, including non-autonomous dynamical systems, skew-product flows, invariant manifolds theory, infinite dimensional dynamical systems, approximation dynamics, and fluid flows.
Download or read book Mathematical Sciences with Multidisciplinary Applications written by Bourama Toni and published by Springer. This book was released on 2016-08-19 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the fourth in a multidisciplinary series which brings together leading researchers in the STEAM-H disciplines (Science, Technology, Engineering, Agriculture, Mathematics and Health) to present their perspective on advances in their own specific fields, and to generate a genuinely interdisciplinary collaboration that transcends parochial subject-matter boundaries. All contributions are carefully edited, peer-reviewed, reasonably self-contained, and pedagogically crafted for a multidisciplinary readership. Contributions are drawn from a variety of fields including mathematics, statistics, game theory and behavioral sciences, biomathematics and physical chemistry, computer science and human-centered computing. This volume is dedicated to Professor Christiane Rousseau, whose work inspires the STEAM-H series, in recognition of her passion for the mathematical sciences and her on-going initiative, the Mathematics of Planet Earth paradigm of interdisciplinarity. The volume's primary goal is to enhance interdisciplinary understanding between these areas of research by showing how new advances in a particular field can be relevant to open problems in another and how many disciplines contribute to a better understanding of relevant issues at the interface of mathematics and the sciences. The main emphasis is on important methods, research directions and applications of analysis within and beyond each field. As such, the volume aims to foster student interest and participation in the STEAM-H domain, as well as promote interdisciplinary research collaborations. The volume is valuable as a reference of choice and a source of inspiration for a broad spectrum of scientists, mathematicians, research students and postdoctoral fellows.
Download or read book Theory and Applications of Abstract Semilinear Cauchy Problems written by Pierre Magal and published by Springer. This book was released on 2018-11-21 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several types of differential equations, such as functional differential equation, age-structured models, transport equations, reaction-diffusion equations, and partial differential equations with delay, can be formulated as abstract Cauchy problems with non-dense domain. This monograph provides a self-contained and comprehensive presentation of the fundamental theory of non-densely defined semilinear Cauchy problems and their applications. Starting from the classical Hille-Yosida theorem, semigroup method, and spectral theory, this monograph introduces the abstract Cauchy problems with non-dense domain, integrated semigroups, the existence of integrated solutions, positivity of solutions, Lipschitz perturbation, differentiability of solutions with respect to the state variable, and time differentiability of solutions. Combining the functional analysis method and bifurcation approach in dynamical systems, then the nonlinear dynamics such as the stability of equilibria, center manifold theory, Hopf bifurcation, and normal form theory are established for abstract Cauchy problems with non-dense domain. Finally applications to functional differential equations, age-structured models, and parabolic equations are presented. This monograph will be very valuable for graduate students and researchers in the fields of abstract Cauchy problems, infinite dimensional dynamical systems, and their applications in biological, chemical, medical, and physical problems.
Download or read book Nonlinear Analysis Geometry and Applications written by Diaraf Seck and published by Springer Nature. This book was released on 2022-10-09 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers twenty-two papers presented at the second NLAGA-BIRS Symposium, which was held at Cap Skirring and at the Assane Seck University in Ziguinchor, Senegal, on January 25–30, 2022. The five-day symposium brought together African experts on nonlinear analysis and geometry and their applications, as well as their international partners, to present and discuss mathematical results in various areas. The main goal of the NLAGA project is to advance and consolidate the development of these mathematical fields in West and Central Africa with a focus on solving real-world problems such as coastal erosion, pollution, and urban network and population dynamics problems. The book addresses a range of topics related to partial differential equations, geometric analysis, geometric structures, dynamics, optimization, inverse problems, complex analysis, algebra, algebraic geometry, control theory, stochastic approximations, and modelling.
- Author : Marco Bramanti
- Publisher : American Mathematical Soc.
- Release : 2010
- ISBN : 0821849034
- Pages : 136 pages
Non Divergence Equations Structured on Hormander Vector Fields Heat Kernels and Harnack Inequalities
Download or read book Non Divergence Equations Structured on Hormander Vector Fields Heat Kernels and Harnack Inequalities written by Marco Bramanti and published by American Mathematical Soc.. This book was released on 2010 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: "March 2010, Volume 204, number 961 (end of volume)."
Download or read book Approximation of Stochastic Invariant Manifolds written by Mickaël D. Chekroun and published by Springer. This book was released on 2014-12-20 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations take the form of Lyapunov-Perron integrals, which are further characterized in Volume II as pullback limits associated with some partially coupled backward-forward systems. This pullback characterization provides a useful interpretation of the corresponding approximating manifolds and leads to a simple framework that unifies some other approximation approaches in the literature. A self-contained survey is also included on the existence and attraction of one-parameter families of stochastic invariant manifolds, from the point of view of the theory of random dynamical systems.
Download or read book Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space written by Zeng Lian and published by American Mathematical Soc.. This book was released on 2010 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. The authors prove a multiplicative ergodic theorem and then use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random invariant sets.
Download or read book Robin Functions for Complex Manifolds and Applications written by Kang-Tae Kim and published by American Mathematical Soc.. This book was released on 2011 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Volume 209, number 984 (third of 5 numbers)."
Download or read book Small Modifications of Quadrature Domains written by Makoto Sakai and published by American Mathematical Soc.. This book was released on 2010 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a given plane domain, the author adds a constant multiple of the Dirac measure at a point in the domain and makes a new domain called a quadrature domain. The quadrature domain is characterized as a domain such that the integral of a harmonic and integrable function over the domain equals the integral of the function over the given domain plus the integral of the function with respect to the added measure. The family of quadrature domains can be modeled as the Hele-Shaw flow with a free-boundary problem. The given domain is regarded as the initial domain and the support point of the Dirac measure as the injection point of the flow.
Download or read book Locally Toric Manifolds and Singular Bohr Sommerfeld Leaves written by Mark D. Hamilton and published by American Mathematical Soc.. This book was released on 2010 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Volume 207, number 971 (first of 5 numbers)."
Download or read book C Algebras of Homoclinic and Heteroclinic Structure in Expansive Dynamics written by Klaus Thomsen and published by American Mathematical Soc.. This book was released on 2010-06-11 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author unifies various constructions of $C^*$-algebras from dynamical systems, specifically, the dimension group construction of Krieger for shift spaces, the corresponding constructions of Wagoner and Boyle, Fiebig and Fiebig for countable state Markov shifts and one-sided shift spaces, respectively, and the constructions of Ruelle and Putnam for Smale spaces. The general setup is used to analyze the structure of the $C^*$-algebras arising from the homoclinic and heteroclinic equivalence relations in expansive dynamical systems, in particular, expansive group endomorphisms and automorphisms and generalized 1-solenoids. For these dynamical systems it is shown that the $C^*$-algebras are inductive limits of homogeneous or sub-homogeneous algebras with one-dimensional spectra.
Download or read book Iterated Function Systems Moments and Transformations of Infinite Matrices written by Palle E. T. Jørgensen and published by American Mathematical Soc.. This book was released on 2011 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors study the moments of equilibrium measures for iterated function systems (IFSs) and draw connections to operator theory. Their main object of study is the infinite matrix which encodes all the moment data of a Borel measure on $\mathbb{R}^d$ or $\mathbb{C}$. To encode the salient features of a given IFS into precise moment data, they establish an interdependence between IFS equilibrium measures, the encoding of the sequence of moments of these measures into operators, and a new correspondence between the IFS moments and this family of operators in Hilbert space. For a given IFS, the authors' aim is to establish a functorial correspondence in such a way that the geometric transformations of the IFS turn into transformations of moment matrices, or rather transformations of the operators that are associated with them.
Download or read book Operator Theory on Noncommutative Domains written by Gelu Popescu and published by American Mathematical Soc.. This book was released on 2010 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Volume 205, number 964 (third of 5 numbers)."
Download or read book Supported Blow Up and Prescribed Scalar Curvature on S n written by Man Chun Leung and published by American Mathematical Soc.. This book was released on 2011 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author expounds the notion of supported blow-up and applies it to study the renowned Nirenberg/Kazdan-Warner problem on $S^n$. When $n \ge 5$ and under some mild conditions, he shows that blow-up at a point with positive definite Hessian has to be a supported isolated blow-up, which, when combined with a uniform volume bound, is a removable singularity. A new asymmetric condition is introduced to exclude single simple blow-up. These enable the author to obtain a general existence theorem for $n \ge 5$ with rather natural condition.
Download or read book The Moment Maps in Diffeology written by Patrick Iglesias-Zemmour and published by American Mathematical Soc.. This book was released on 2010 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This memoir presents a generalization of the moment maps to the category {Diffeology}. This construction applies to every smooth action of any diffeological group G preserving a closed 2-form w, defined on some diffeological space X. In particular, that reveals a universal construction, associated to the action of the whole group of automorphisms Diff (X, w). By considering directly the space of momenta of any diffeological group G, that is the space g* of left-invariant 1-forms on G, this construction avoids any reference to Lie algebra or any notion of vector fields, or does not involve any functional analysis. These constructions of the various moment maps are illustrated by many examples, some of them originals and others suggested by the mathematical literature."--Publisher's description.