EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Catalytic Processes for The Valorisation of Biomass Derived Molecules

Download or read book Catalytic Processes for The Valorisation of Biomass Derived Molecules written by Francesco Mauriello and published by MDPI. This book was released on 2019-11-22 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decades, inedible lignocellulosic biomasses have attracted significant attention for being abundant resources that are not in competition with agricultural land or food production and, therefore, can be used as starting renewable material for the production of a wide variety of platform chemicals. The three main components of lignocellulosic biomasses are cellulose, hemicellulose and lignin, complex biopolymers that can be converted into a pool of platform molecules including sugars, polyols, alchols, ketons, ethers, acids and aromatics. Various technologies have been explored for their one-pot conversion into chemicals, fuels and materials. However, in order to develop new catalytic processes for the selective production of desired products, a complete understanding of the molecular aspects of the basic chemistry and reactivity of biomass derived molecules is still crucial. This Special Issue reports on recent progress and advances in the catalytic valorization of cellulose, hemicellulose and lignin model molecules promoted by novel heterogeneous systems for the production of energy, fuels and chemicals.

Book Catalytic Processes for The Valorisation of Biomass Derived Molecules

Download or read book Catalytic Processes for The Valorisation of Biomass Derived Molecules written by Francesco Mauriello and published by . This book was released on 2019 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decades, inedible lignocellulosic biomasses have attracted significant attention for being abundant resources that are not in competition with agricultural land or food production and, therefore, can be used as starting renewable material for the production of a wide variety of platform chemicals. The three main components of lignocellulosic biomasses are cellulose, hemicellulose and lignin, complex biopolymers that can be converted into a pool of platform molecules including sugars, polyols, alchols, ketons, ethers, acids and aromatics. Various technologies have been explored for their one-pot conversion into chemicals, fuels and materials. However, in order to develop new catalytic processes for the selective production of desired products, a complete understanding of the molecular aspects of the basic chemistry and reactivity of biomass derived molecules is still crucial. This Special Issue reports on recent progress and advances in the catalytic valorization of cellulose, hemicellulose and lignin model molecules promoted by novel heterogeneous systems for the production of energy, fuels and chemicals.

Book Biomass Processing over Gold Catalysts

Download or read book Biomass Processing over Gold Catalysts written by Olga A. Simakova and published by Springer Science & Business Media. This book was released on 2013-07-13 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries. In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are presented for all of the reactions mentioned above. This book provides an overview of the recent research results focusing on application of gold catalysts for synthesis of valuable chemicals using renewable feedstocks.

Book Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II

Download or read book Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II written by Marcel Schlaf and published by Springer. This book was released on 2015-10-30 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume II presents the latest advances in catalytic hydrodeoxygenation and other transformations of some cellulosic platform chemicals to high value-added products. It presents the theoretical evaluation of the energetics and catalytic species involved in potential pathways of catalyzed carbohydrate conversion, pathways leading to the formation of humin-based by-products, and thermal pathways in deriving chemicals from lignin pyrolysis and hydrodeoxygenation. Catalytic gasification of biomass under extreme thermal conditions as an extension of pyrolysis is also discussed. Marcel Schlaf, PhD, is a Professor at the Department of Chemistry, University of Guelph, Canada. Z. Conrad Zhang, PhD, is a Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.

Book Chemical Catalysts for Biomass Upgrading

Download or read book Chemical Catalysts for Biomass Upgrading written by Mark Crocker and published by John Wiley & Sons. This book was released on 2020-03-09 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference to the use of innovative catalysts and processes to turn biomass into value-added chemicals Chemical Catalysts for Biomass Upgrading offers detailed descriptions of catalysts and catalytic processes employed in the synthesis of chemicals and fuels from the most abundant and important biomass types. The contributors?noted experts on the topic?focus on the application of catalysts to the pyrolysis of whole biomass and to the upgrading of bio-oils. The authors discuss catalytic approaches to the processing of biomass-derived oxygenates, as exemplified by sugars, via reactions such as reforming, hydrogenation, oxidation, and condensation reactions. Additionally, the book provides an overview of catalysts for lignin valorization via oxidative and reductive methods and considers the conversion of fats and oils to fuels and terminal olefins by means of esterification/transesterification, hydrodeoxygenation, and decarboxylation/decarbonylation processes. The authors also provide an overview of conversion processes based on terpenes and chitin, two emerging feedstocks with a rich chemistry, and summarize some of the emerging trends in the field. This important book: -Provides a comprehensive review of innovative catalysts, catalytic processes, and catalyst design -Offers a guide to one of the most promising ways to find useful alternatives for fossil fuel resources -Includes information on the most abundant and important types of biomass feedstocks -Examines fields such as catalytic cracking, pyrolysis, depolymerization, and many more Written for catalytic chemists, process engineers, environmental chemists, bioengineers, organic chemists, and polymer chemists, Chemical Catalysts for Biomass Upgrading presents deep insights on the most important aspects of biomass upgrading and their various types.

Book Catalytic Conversion of Biomass derived Compounds Into Specialty Chemicals and Diesel Fuel Precursor Molecules

Download or read book Catalytic Conversion of Biomass derived Compounds Into Specialty Chemicals and Diesel Fuel Precursor Molecules written by Paolo Andres Cuello Penaloza and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomass offers a plethora of opportunities to obtain useful and unique products in a sustainable way, be it chemicals with specialty applications, or molecules that can be blended into our everyday fuels, potentially improving their desired properties. In this work, we study two processes involving the conversion of biomass-derived feedstocks into specialty chemicals and diesel fuel precursors using suitable solid catalysts for each application. In Chapters 2 and 3, we delve into the production of hexane-1,2,5,6-tetrol from levoglucosanol, which is ultimately obtained from a cellulose direct derivate, and a potential application as a polymer precursor. In Chapter 2, we obtain kinetic information for the conversion of levoglucosanol into the polyol using a Pt-WOx/TiO2 catalyst at industrially relevant concentrations (10 - 30wt% reactant in water), showing that with this catalyst we can obtain selectively our product of interests, and also preserve over 90% of the reactant stereocenters. We also demonstrate the relative stability of this catalyst compared to what is known in literature, and its regenerability as well. In Chapter 3, we show a potential application for hexane-1,2,5,6-tetrol in the synthesis of tetrol-boronate copolymers when benzenediboronic acids are used. We prove that a facile synthesis is possible at room temperature with various solvents, and demonstrate that the properties of the polymers are impacted by the choice of a solvent, and the diastereomeric excess of the reactant, managing to obtain a first-known case of a chiral polymer when 98% d.e. (S,R)-hexane-1,2,5,6-tetrol is used. In Chapters 4 and 5, we study the selective conversion of ethanol into larger molecules that can be ultimately converted into compounds that can be blended into diesel by different methods when MgAl mixed metal oxide catalysts that have very low loadings of Cu are used. In Chapter 4, we demonstrate that when Cu loadings less than 0.6wt% are used in MgAl catalysts, very high diesel fuel precursor selectivities may be obtained, with the most significant products being larger alcohols and aldehydes, followed by large esters, and relatively minor amounts of ethyl acetate. We proved that changing the properties of the MgAl support does not greatly impact the performance of the catalyst, instead we found that the loading of Cu is the determinant factor in catalyst performance due to Cu acting more as a promoter of MgAl acid-base chemistry than as an actual catalyst for the Guerbet coupling reaction. The presence of Cu in low amounts also enables the selective production of esters with 6 or more carbons over ethyl acetate. The studied catalysts also promoted high product alcohol linearity, and the alcohol selectivity per carbon number fitted the Schultz-Flory distribution, showing that alcohol growth is dictated by chain growth behavior. In Chapter 5, we studied the performance of a single low Cu loading MgAl catalyst at different contact times, performed tests at varying ethanol-to-hydrogen partial pressure ratios, and performed cofeed studied of ethanol with acetaldehyde and ethyl acetate in order to elucidate the reaction network of ethanol oligomerization to larger oxygenates. We found that selectivity to higher alcohols was greater towards alcohols at all conversions, and alcohols exhibit chain-growth at all contact times. We found that ester and ketone selectivity increase with conversion, with their sizes becoming larger with conversion as well. Esters are series products from alcohols and aldehydes. Finally, we demonstrated that higher linear alcohols will be more selective to esters that ethanol, and that branched alcohols feeds may form esters selectively. Finally, in Chapter 6, we cover the conclusions from all the performed studies, and provide an outlook on future research avenues that enable the effective conversion of biomass-derived feedstocks into products of added value using solid catalysts.

Book Design of Heterogeneous Catalysts

Download or read book Design of Heterogeneous Catalysts written by Umit S. Ozkan and published by John Wiley & Sons. This book was released on 2009-02-11 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This long-awaited reference source is the first book to focus on this important and hot topic. As such, it provides examples from a wide array of fields where catalyst design has been based on new insights and understanding, presenting such modern and important topics as self-assembly, nature-inspired catalysis, nano-scale architecture of surfaces and theoretical methods. With its inclusion of all the useful and powerful tools for the rational design of catalysts, this is a true "must have" book for every researcher in the field.

Book Sustainable Catalysis for Biorefineries

Download or read book Sustainable Catalysis for Biorefineries written by Francesco Frusteri and published by Royal Society of Chemistry. This book was released on 2018 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the most effective or promising catalytic processes for the conversion of biobased components into high added value products, as platform chemicals and intermediates.

Book Catalytic Conversion of Biomass derived Molecules

Download or read book Catalytic Conversion of Biomass derived Molecules written by Hossein Bayahia and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Role of Catalysis for the Sustainable Production of Bio fuels and Bio chemicals

Download or read book The Role of Catalysis for the Sustainable Production of Bio fuels and Bio chemicals written by Kostas Triantafyllidis and published by Newnes. This book was released on 2013-03-19 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals describes the importance of catalysis for the sustainable production of biofuels and biochemicals, focused primarily on the state-of-the-art catalysts and catalytic processes expected to play a decisive role in the "green" production of fuels and chemicals from biomass. In addition, the book includes general elements regarding the entire chain of biomass production, conversion, environment, economy, and life-cycle assessment. Very few books are available on catalysis in production schemes using biomass or its primary conversion products, such as bio-oil and lignin. This book fills that gap with detailed discussions of: Catalytic pyrolysis of lignocellulosic biomass Hybrid biogasoline by co-processing in FCC units Fischer-Tropsch synthesis to biofuels (biomass-to-liquid process) Steam reforming of bio-oils to hydrogen With energy prices rapidly rising, environmental concerns growing, and regulatory apparatus evolving, this book is a resource with tutorial, research, and technological value for chemists, chemical engineers, policymakers, and students. Includes catalytic reaction mechanism schemes and gives a clear understanding of catalytic processes Includes flow diagrams of bench-, pilot- and industrial-scale catalytic processing units and demonstrates the various process technologies involved, enabling easy selection of the best process Incorporates many tables, enabling easy comparison of data based on a critical review of the available literature

Book Catalysis for Clean Energy and Environmental Sustainability

Download or read book Catalysis for Clean Energy and Environmental Sustainability written by K. K. Pant and published by Springer. This book was released on 2021-05-20 with total page 934 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is part of a two-volume work that offers a unique blend of information on realistic evaluations of catalyst-based synthesis processes using green chemistry principles and the environmental sustainability applications of such processes for biomass conversion, refining, and petrochemical production. The volumes provide a comprehensive resource of state-of-the-art technologies and green chemistry methodologies from researchers, academics, and chemical and manufacturing industrial scientists. The work will be of interest to professors, researchers, and practitioners in clean energy catalysis, green chemistry, chemical engineering and manufacturing, and environmental sustainability. This volume focuses on the potentials, recent advances, and future prospects of catalysis for biomass conversion and value-added chemicals production via green catalytic routes. Readers are presented with a mechanistic framework assessing the development of product selective catalytic processes for biomass and biomass-derived feedstock conversion. The book offers a unique combination of contributions from experts working on both lab-scale and industrial catalytic processes and provides insight into the use of various catalytic materials (e.g., mineral acids, heteropolyacid, metal catalysts, zeolites, metal oxides) for clean energy production and environmental sustainability.

Book Nano  Bio Catalysis in Lignocellulosic Biomass Valorization

Download or read book Nano Bio Catalysis in Lignocellulosic Biomass Valorization written by Rafael Luque and published by Frontiers Media SA. This book was released on 2019-03-01 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: The valorization of lignocellulosic biomass, in the form of forest and agricultural wastes, industrial processing side-streams, and dedicated energy crops, toward chemicals, fuels and added-value products has become a major research area with increasing exploitation potential. The efficient and tailored depolymerization of biomass or its primary structural components (hemicellulose, cellulose, and lignin) to platform chemicals, i.e., sugars, phenolics, furans, ketones, organic acids, etc. is highly dependent on the development of novel or modified chemo- and bio-catalytic processes that take into account the peculiarities and recalcitrance of biomass as feedstock, compared for example to petroleum fractions. The present Research Topic in Frontiers in Chemistry, Section of Green and Sustainable Chemistry, entitled “Nano-(bio)catalysis in lignocellulosic biomass valorization” aims to further contribute to the momentum of research and development in the (bio)catalytic conversion of biomass, by featuring original research papers as well as two review papers, authored and reviewed by experts in the field. The Research Topic addresses various representative reactions and processes in biomass valorization, highlighting the importance of developing novel, efficient and stable nano-(bio)catalysts with tailored properties according to the nature of the reactant/feedstock and the targeted products.

Book Valorization of Biomass Using Novel Catalytic and Electrocatalytic Processes

Download or read book Valorization of Biomass Using Novel Catalytic and Electrocatalytic Processes written by Manali Dhawan and published by . This book was released on 2021 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing energy requirements and environmental pollution, along with predicted shortages of fossil fuels in the near future, have accelerated the search for alternative renewable energy sources. Biomass is a promising renewable resource for the production of value-added fuels and chemicals. In this work, triglycerides, furfural and 5-hydroxymethylfurfural (HMF) are used as bio-derived feedstock chemicals for chemo- or electro-catalytic conversion to valuable chemicals that find applications in fuels, polymer, perfumery and pharmaceutical industries.Chemical interesterification of triglycerides was conducted with methyl acetate, as an alternative to transesterification, to co-produce biodiesel and a higher value-added compound, triacetin, instead of glycerol. Conversion of waste methyl acetate in terephthalic acid production industry using triglyceride into two valorized products biodiesel and triacetin is a novel idea. Biodiesel is a well-known renewable fuel and triacetin can be used as a fuel additive. Amongst various base catalysts screened, calcined Mg-Al hydrotalcite (Mg:Al mole ratio - 3:1) was found to have the best activity in terms triglyceride conversion and triacetin selectivity.We also studied the etherification of HMF with ethylene glycol to produce 5-(2- hydroxyethoxymethyl) furfural (HEMF), which finds application as a fuel additive. Metal substituted heteropoly acid catalysts were identified as a chemo-selective catalyst that favored etherification of HMF over acetalization reaction. Aluminum substituted dodecatungsto-phosphoric acid achieved the highest HMF conversion and HEMF selectivity, which was attributed to the combined role of the catalyst's Lewis and Bronsted acidity.Further, electrocatalytic hydrogenation (ECH) of furfural using zinc as a novel metal catalyst was studied to produce furfuryl alcohol and 2-methylfuran, which have applications in pharmaceutical, polymer and fuel industries. The effect of metal catalyst and electrolyte pH on the yield and Faradaic efficiency (FE) of the desired products was studied. Electrolysis at neutral pH (pH 6 to 8) exhibited increased yields and FE as compared to acidic and basic pH. FE for ECH of furfural with Zn was remarkably higher as compared to Cu and Ni.However, during ECH of furfural, the total yield of the desired products was low compared to the conversion of furfural which was due to electrodimerization reactions. Thus, zinc metal nanoparticles were synthesized by electrodeposition to achieve higher activity for furfural ECH as compared to bare zinc metal due to high surface area and roughness. Furfural electrolysis in 0.5 M bicarbonate electrolyte at -0.6 V/RHE yielded higher conversion, yield and FE as compared to bare zinc. Catalyst characterization revealed the presence of surface zinc oxide species post- electrolysis, which could have a role in reaction mechanism.Overall, this work contributes to the field of biomass valorization, by identifying new selective catalysts and processes to produce value-added chemicals using renewable bio-derived feedstocks. Catalyst synthesis, reaction engineering and process optimization studied for biomass conversion processes in this work will aid in future process intensification of such processes.

Book Developing Catalytic Pathways for the Valorization of Biomass based Platform Molecules Via Electrochemical Reduction and Oxidation Reactions

Download or read book Developing Catalytic Pathways for the Valorization of Biomass based Platform Molecules Via Electrochemical Reduction and Oxidation Reactions written by Stephen R. Kubota and published by . This book was released on 2018 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a tremendous global reliance on fossil fuels for the production of a vast amount of products including fuels, plastics, and pharmaceuticals. Dependence on fossil fuels has negative long-term implications due to the finite nature of fossil fuels, as well as environmental impacts from increased atmospheric CO2 levels. Therefore, a renewable and environmentally friendly alternative to fossil fuels is highly desirable. Lignocellulosic biomass, the most abundant form of organic carbon on Earth, provides a highly promising alternative to fossil fuels due to its renewable and environmentally friendly nature. A considerable amount of research has been devoted to converting lignocellulosic biomass into useful products, and many strategies to synthesized biomass-derived alternatives to fossil fuel products have already been demonstrated. The work presented herein describes various electrochemical routes to convert lignocellulosic biomass-derived platform molecules into value added products to replace fossil fuel-derived products via reduction and oxidation reactions. Electrochemical biomass conversion reactions have various advantages over traditional biomass conversion techniques. For example, electrochemical conversions can be performed at ambient temperatures and pressures, the need for stoichiometric amounts of chemical oxidants and reductants are eliminated, water can be used as the oxygen or hydrogen source for oxidation and reduction reactions, and electrochemical reactions are always composed of a simultaneous reduction and oxidation reaction. This means that two valuable products can simultaneously be produced (e.g. simultaneous biomass oxidation and reduction reactions or biomass oxidation and H2 evolution). The strategies reported herein highlight the promising future of electrochemical biomass conversion.

Book Handbook of Biomass Valorization for Industrial Applications

Download or read book Handbook of Biomass Valorization for Industrial Applications written by Shahid ul-Islam and published by John Wiley & Sons. This book was released on 2022-01-05 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: HANDBOOK of BIOMASS VALORIZATION for INDUSTRIAL APPLICATIONS The handbook provides a comprehensive view of cutting-edge research on biomass valorization, from advanced fabrication methodologies through useful derived materials, to current and potential application sectors. Industrial sectors, such as food, textiles, petrochemicals and pharmaceuticals, generate massive amounts of waste each year, the disposal of which has become a major issue worldwide. As a result, implementing a circular economy that employs sustainable practices in waste management is critical for any industry. Moreover, fossil fuels, which are the primary sources of fuel in the transportation sector, are also being rapidly depleted at an alarming rate. Therefore, to combat these global issues without increasing our carbon footprint, we must look for renewable resources to produce chemicals and biomaterials. In that context, agricultural waste materials are gaining popularity as cost-effective and abundantly available alternatives to fossil resources for the production of a variety of value-added products, including renewable fuels, fuel components, and fuel additives. Handbook of Biomass Valorization for Industrial Applications investigates current and emerging feedstocks, as well as provides in-depth technical information on advanced catalytic processes and technologies that enable the development of all possible alternative energy sources. The 22 chapters of this book comprehensively cover the valorization of agricultural wastes and their various uses in value-added applications like energy, biofuels, fertilizers, and wastewater treatment. Audience The book is intended for a very broad audience working in the fields of materials sciences, chemical engineering, nanotechnology, energy, environment, chemistry, etc. This book will be an invaluable reference source for the libraries in universities and industrial institutions, government and independent institutes, individual research groups, and scientists working in the field of valorization of biomass.

Book Catalysis for Green Energy and Technology

Download or read book Catalysis for Green Energy and Technology written by Samira Bagheri and published by Springer. This book was released on 2017-06-28 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the importance of catalysis for the sustainable production of biofuels and biochemicals, focusing primarily on the state-of-the-art catalysts and catalytic processes expected to play a decisive role in the "green" production of fuels and chemicals from biomass. The book also includes general sections exploring the entire chain of biomass production, conversion, environment, economy, and life-cycle assessment.

Book New and Future Developments in Catalysis

Download or read book New and Future Developments in Catalysis written by B. Kamm and published by Elsevier Inc. Chapters. This book was released on 2013-07-17 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: