EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

Download or read book Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Regenerable sorbents based on sodium carbonate (Na2CO3) can be used to separate carbon dioxide (CO2) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO2 is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO2 separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO2 present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO2 removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO2 and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO2 and water vapor. After condensation of the water, a pure CO2 stream can be obtained. TGA testing showed that the Na2CO3 sorbents react irreversibly with sulfur dioxide (SO2) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na2CO3-based sorbent that includes a co-current downflow reactor system for adsorption of CO2 and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO2 gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO2 removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO2 removal system based on monoethanolamine (MEA).

Book Carbon Dioxide Capture from Flue Gas Using Dry  Regenerable Sorbents

Download or read book Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents written by Raghubir P. Gupta and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

Book Carbon Dioxide Capture from Flue Gas Using Regenerable Sodium based Sorbents

Download or read book Carbon Dioxide Capture from Flue Gas Using Regenerable Sodium based Sorbents written by Ya Liang and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Climate Change Mitigation

Download or read book Handbook of Climate Change Mitigation written by Wei-Yin Chen and published by Springer. This book was released on 2012-02-13 with total page 2130 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Climate Change and Societal Issues, Impacts of Climate Change, Energy Conservation, Alternative Energies, Advanced Combustion, Advanced Technologies, and Education and Outreach.

Book Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide  CO2  Capture

Download or read book Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide CO2 Capture written by Paul Fennell and published by Elsevier. This book was released on 2015-05-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. - Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical looping - Provides a lucid explanation of advanced concepts and developments in calcium and chemical looping, high pressure systems, and alternative CO2 carriers - Presents information on the market development, economics, and deployment of these systems

Book Post combustion Carbon Dioxide Capture Materials

Download or read book Post combustion Carbon Dioxide Capture Materials written by Qiang Wang and published by Royal Society of Chemistry. This book was released on 2018-10-22 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inorganic solid adsorbents/sorbents are attractive materials for capturing carbon dioxide (CO2) from flue gases after fossil fuel combustion. Post-combustion Carbon Dioxide Capture Materials introduces the key inorganic materials used as adsorbents/sorbents with specific emphasis on their design, synthesis, characterization, performance, and mechanism. Dedicated chapters cover carbon-based adsorbents, zeolite- and silica-based adsorbents, metal–organic framework (MOF)-based adsorbents, and alkali-metal-carbonate-based adsorbents. The final chapter discusses the practical application aspects of these adsorbents used in carbon dioxide capture from flue gases. Edited and written by world-renowned scientists in each class of the specific material, this book will provide a comprehensive introduction for advanced undergraduates, postgraduates and researchers from both academic and industrial fields wishing to learn about the topic.

Book Carbon Dioxide Capture from Flue Gases Using Dry Sorbents

Download or read book Carbon Dioxide Capture from Flue Gases Using Dry Sorbents written by and published by . This book was released on 2021 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon capture -- CO2 -- Adsorption -- Kinetics -- Thermodynamics -- Activated carbon

Book CO2 Capture

Download or read book CO2 Capture written by Fabrice Lecomte and published by Editions TECHNIP. This book was released on 2010 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: CO2 capture and geological storage (CCS) is now recognised as being one of the pathways that can be implemented to reduce CO2 emissions and fight against global warming. But where, how and at what price can CO2 be captured? This book attempts to provide the answers to these questions, reviewing the state of the art of the technologies required. It presents the three main pathways considered in which the CO2 capture technologies are expected to be implemented, respectively: the post-combustion pathway, in which the CO2 contained in industrial flue gases is extracted; the oxy-combustion pathway, in which combustion is performed in oxygen to obtain flue gases with high CO2 concentration; and lastly the pre-combustion pathway, in which carbon is extracted from the initial fuel to generate hydrogen, whose combustion will produce only water vapour. The book introduces, for each pathway, the technologies currently available and those under development. It is intended for everyone wanting to gain a better understanding of the mechanisms implemented in CO2 capture operations, as well as the technological and economic challenges to be met to ensure that the costs generated by these operations are no longer an obstacle to their worldwide generalisation.Contents: 1. Why capture and store CO2? Global warming. How to reduce CO2 emissions. Main links of the CCS chain. 2. Where capture CO2? CO2 fixed emission sources worldwide. Fixed sources in France. CO2 capture potential in France. 3. Post-Combustion CO2 capture. Principles and stakes. Characteristics of post-combustion flue gases. Separation techniques potentially suitable for post-combustion CO2 capture. Technologies under development for post-combustion CO2 Capture. CO2 conditioning. Conclusion. 4. Oxy-combustion CO2 capture. Principles and stakes. Oxy-combustion. Chemical looping combustion. CO2 conditioning. Demonstrations. 5. Pre-combustion CO2 capture. Principles and stakes. Syngas production. Water-gas shift reaction. CO2 extraction. CO2 conditioning. Hydrogen combustion. Integrated power production processes with pre-combustion CO2 capture. 6. Capture and store CO2: at what cost? Calculation bases. CO2 capture costs. CO2 transport costs. CO2 storage costs. Trend in the cost of the CCS chain - Power production. Variability of CCS chain costs. Application to existing installations. Conclusion. Appendix.

Book Sorbents Materials for Controlling Environmental Pollution

Download or read book Sorbents Materials for Controlling Environmental Pollution written by Avelino Nunez-Delgado and published by Elsevier. This book was released on 2021-02-16 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sorbents Materials for Controlling Environmental Pollution: Current State and Trends presents data on current use and future trends regarding sorbent materials employed against soil, water, and air pollution. The book is organized first by use and research for a variety of geographic areas. It will then focus on different sorbent materials and their uses, followed by various pollutants and their management. Including updated and extensive data from an assortment of sources, the book is organized to be very accessible, including with an interactive table to help identify the results of appropriate sorbents for each environmental compartment. The growing concern regarding soil, water and air pollution all over the world has implications for climate change and sustainability, making Sorbents Materials for Controlling Environmental Pollution: Current State and Trends an important reference for environmental scientists to identify tools for moving forward in solving these problems. - Includes data and examples from various geographic locations worldwide - Synthesizes data for a variety of sorbent material from different sources - Presents data for various kinds of pollutants across environmental spheres, including soil, water, and air - Utilizes an interactive table for quicker access to data and results

Book Carbon Dioxide Capture from Power Plant Flue Gas Using Regenerable Activated Carbon Powder Impregnated with Potassium Carbonate

Download or read book Carbon Dioxide Capture from Power Plant Flue Gas Using Regenerable Activated Carbon Powder Impregnated with Potassium Carbonate written by Guilbert Ebune Ebune and published by . This book was released on 2008 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Developments and Innovation in Carbon Dioxide  CO2  Capture and Storage Technology

Download or read book Developments and Innovation in Carbon Dioxide CO2 Capture and Storage Technology written by M. Mercedes Maroto-Valer and published by Elsevier. This book was released on 2010-06-21 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon dioxide (CO2) capture and storage (CCS) is the one advanced technology that conventional power generation cannot do without. CCS technology reduces the carbon footprint of power plants by capturing and storing the CO2 emissions from burning fossil-fuels and biomass. This volume provides a comprehensive reference on the state of the art research, development and demonstration of carbon capture technology in the power sector and in industry. It critically reviews the range of post- and pre-combustion capture and combustion-based capture processes and technology applicable to fossil-fuel power plants, as well as applications of CCS in other high carbon footprint industries. Foreword written by Lord Oxburgh, Climate Science Peer Reviews the economics, regulation and planning of carbon capture and storage for power plants and industry Explores developments in combustion processes and technologies for CO2 capture in power plants

Book Principles of Adsorption and Adsorption Processes

Download or read book Principles of Adsorption and Adsorption Processes written by Douglas M. Ruthven and published by John Wiley & Sons. This book was released on 1984-06-05 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first up-to-date summary and review for the fundamental principles and industrial practice of adsorption separation processes in more than 30 years. Emphasizes the understanding of adsorption column dynamics and the modeling of adsorption systems, as well as fundamental aspects of kinetics and equilibria.

Book Porous Materials for Carbon Dioxide Capture

Download or read book Porous Materials for Carbon Dioxide Capture written by An-Hui Lu and published by Springer Science & Business. This book was released on 2014-04-17 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-authored book provides a comprehensive overview of the latest developments in porous CO2 capture materials, including ionic liquid–derived carbonaceous adsorbents, porous carbons, metal-organic frameworks, porous aromatic frameworks, micro porous organic polymers. It also reviews the sorption techniques such as cyclic uptake and desorption reactions and membrane separations. In each category, the design and fabrication, the comprehensive characterization, the evaluation of CO2 sorption/separation and the sorption/degradation mechanism are highlighted. In addition, the advantages and remaining challenges as well as future perspectives for each porous material are covered. This book is aimed at scientists and graduate students in such fields as separation, carbon, polymer, chemistry, material science and technology, who will use and appreciate this information source in their research. Other specialists may consult specific chapters to find the latest, authoritative reviews. Dr. An-Hui Lu is a Professor at the State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, China. Dr. Sheng Dai is a Corporate Fellow and Group Leader in the Chemical Sciences Division at Oak Ridge National Laboratory (ORNL) and a Professor of Chemistry at the University of Tennessee, USA.

Book Carbon Dioxide Capture and Separation Techniques for Gasification based Power Generation Point Sources

Download or read book Carbon Dioxide Capture and Separation Techniques for Gasification based Power Generation Point Sources written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (post-combustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle or IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, dry, regenerable processes based on sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.

Book Carbon Dioxide Capture from Coal fired Power Plant Flue Gas on Carbonaceous Sorbents

Download or read book Carbon Dioxide Capture from Coal fired Power Plant Flue Gas on Carbonaceous Sorbents written by Kaspars Krutkramelis and published by . This book was released on 2010 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid state carbonaceous sorbents are tested and evaluated as potential materials for CO2 capture from coal-fired power plant flue gas. In order to establish economic viability for CO2 capture of carbon materials, elementary adsorption and regeneration experiments have been performed. It has been known that carbon materials have fairly low heat of sorption towards CO2, approximately 20 [kJ/mol CO2] for AC-1. This is advantageous, if one considers and anticipates approximately similar regeneration energy for CO2 release and capture. However, further research in desorption methods demonstrates significantly larger regeneration energy requirements than previously thought. An original direct steam regeneration approach requires theoretical regeneration energy at approximately 311 [kJ/mol CO2] and experimental measurements suggest values closer to 443 [kJ/mol CO2]. Vacuum regeneration is explored next as a potential method for lower desorption energy. It is found that the vacuum desorption process is a considerably better selection with approximately 28 [kJ/mol CO2] theoretical energy requirement for ambient pressure sorption, and 56 and, 85 [kJ/mol CO2] for 3.92 [bar] and 9.72 [bar] PSA respectively. Nevertheless, due to efficiency limitations of physical vacuum systems, CO2 capture by vacuum desorption surges to approximately 101 [kJ/mol CO2] for ambient pressure sorption, and the best case scenario CO2 nominal capture cost is calculated at $40.49/tCO2.

Book Absorption Based Post Combustion Capture of Carbon Dioxide

Download or read book Absorption Based Post Combustion Capture of Carbon Dioxide written by Paul Feron and published by Woodhead Publishing. This book was released on 2016-05-27 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: Absorption-Based Post-Combustion Capture of Carbon Dioxide provides a comprehensive and authoritative review of the use of absorbents for post-combustion capture of carbon dioxide. As fossil fuel-based power generation technologies are likely to remain key in the future, at least in the short- and medium-term, carbon capture and storage will be a critical greenhouse gas reduction technique. Post-combustion capture involves the removal of carbon dioxide from flue gases after fuel combustion, meaning that carbon dioxide can then be compressed and cooled to form a safely transportable liquid that can be stored underground. - Provides researchers in academia and industry with an authoritative overview of the amine-based methods for carbon dioxide capture from flue gases and related processes - Editors and contributors are well known experts in the field - Presents the first book on this specific topic

Book High Temperature Reactive CO2 Separation from Flue Gas Using Calcium Based Sorbents

Download or read book High Temperature Reactive CO2 Separation from Flue Gas Using Calcium Based Sorbents written by Danny Man-Leung Wong and published by . This book was released on 2007 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Greenhouse gas emissions into the atmosphere have become an issue of concern with the increase in global population and demand for energy. In response to the demand for carbon emissions control, The Ohio State University has developed a novel high temperature multi-pollutant capture process that simultaneously captures carbon dioxide (CO2) and sulfur dioxide (SO2) from fossil fuels combustion flue gas streams. The multi- cyclic Carbonation Calcination Reaction (CCR) process utilizes a calcium-based sorbent in a high temperature reaction (carbonation) to capture the CO2 from the flue gas stream and releases a pure stream of CO2 that can be sequestered in the subsequent calcination reaction. The overall success of the technology depends on the development and optimization of the carbonation and calcination processes to create an integrated, cost and energy efficient process for carbon capture. The development of the CCR technology was further advanced from bench-scale research to an integrated, continuous, sub-pilot scale demonstration. Single-pass carbonation studies demonstrated high CO2 and SO2 removals using commercial calcium hydroxide as the sorbent in an entrained bed reactor. The high inherent pore volume of the commercial calcium hydroxide sorbent resulted in its demonstration of over 4 times the CO2 removal than commercial pulverized lime under similar process conditions. Bench-scale studies of the calcium carbonate (CaCO3) calcination reaction were conducted in the presence of steam and CO2 to effectively regenerate the spent CaCO3 sorbent in a manner suited for a carbon capture system. CaCO3 calcination in the presence of steam in the reactor lowers the partial pressure of CO2 such that complete calcination can be achieved at temperatures of 7500C and greater with significantly reduced calcination residence times. The resultant product CaO surface morphology is comparable to those achieved in calcination conditions of 100% CO2 despite known sintering effects of water vapor on the ionic structure of CaO.