EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Capture and Relaxation in Self Assembled Semiconductor Quantum Dots

Download or read book Capture and Relaxation in Self Assembled Semiconductor Quantum Dots written by Robson Ferreira and published by Morgan & Claypool Publishers. This book was released on 2016-02-23 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an overview of different models and mechanisms developed to describe the capture and relaxation of carriers in quantum-dot systems. Despite their undisputed importance, the mechanisms leading to population and energy exchanges between a quantum dot and its environment are not yet fully understood. The authors develop a first-order approach to such effects, using elementary quantum mechanics and an introduction to the physics of semiconductors. The book results from a series of lectures given by the authors at the Master’s level.

Book Capture and Relaxation in Self Assembled Semiconductor Quantum Dots

Download or read book Capture and Relaxation in Self Assembled Semiconductor Quantum Dots written by R Ferreira and published by Myprint. This book was released on 2015-12-18 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Self Assembled Quantum Dots

Download or read book Self Assembled Quantum Dots written by Zhiming M Wang and published by Springer Science & Business Media. This book was released on 2007-11-29 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.

Book Semiconductor Quantum Dots

Download or read book Semiconductor Quantum Dots written by Y. Masumoto and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor quantum dots represent one of the fields of solid state physics that have experienced the greatest progress in the last decade. Recent years have witnessed the discovery of many striking new aspects of the optical response and electronic transport phenomena. This book surveys this progress in the physics, optical spectroscopy and application-oriented research of semiconductor quantum dots. It focuses especially on excitons, multi-excitons, their dynamical relaxation behaviour and their interactions with the surroundings of a semiconductor quantum dot. Recent developments in fabrication techniques are reviewed and potential applications discussed. This book will serve not only as an introductory textbook for graduate students but also as a concise guide for active researchers.

Book Self Assembled InGaAs GaAs Quantum Dots

Download or read book Self Assembled InGaAs GaAs Quantum Dots written by and published by Academic Press. This book was released on 1999-03-29 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is concerned with the crystal growth, optical properties, and optical device application of the self-formed quantum dot, which is one of the major current subjects in the semiconductor research field.The atom-like density of states in quantum dots is expected to drastically improve semiconductor laser performance, and to develop new optical devices. However, since the first theoretical prediction for its great possibilities was presented in 1982, due to the difficulty of their fabrication process. Recently, the advent of self-organized quantum dots has made it possible to apply the results in important optical devices, and further progress is expected in the near future.The authors, working for Fujitsu Laboratories, are leading this quantum-dot research field. In this volume, they describe the state of the art in the entire field, with particular emphasis on practical applications.

Book Quantum Dot Heterostructures

Download or read book Quantum Dot Heterostructures written by Dieter Bimberg and published by John Wiley & Sons. This book was released on 1999-03-17 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Da die Nachfrage nach immer schnelleren und kleineren Halbleiterbauelementen stetig wächst, sind Quanten-Dots und -Pyramiden rasant in den Mittelpunkt der Halbleiterforschung gerückt. Dieses Buch vermittelt einen umfassenden Überblick über den aktuellen Forschungsstand auf diesem Gebiet. Behandelt werden u.a. Fragen, wie Strukturen aufgebaut, wie sie charakterisiert werden und wie sie die Leistungsfähigkeit der Bauelemente bestimmen. (11/98)

Book Time Resolved Electronic Relaxation Processes in Self Organized Quantum Dots

Download or read book Time Resolved Electronic Relaxation Processes in Self Organized Quantum Dots written by and published by . This book was released on 2005 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors have performed a comprehensive set of experiments on the dynamics of electrons and holes in semiconductor quantum dots, and a complete picture of the dynamics as a function of carrier density and temperature has emerged. Specifically, they have used two- and three-pulse femtosecond differential transmission spectroscopy to study the dependence of quantum dot carrier dynamics on temperature. At low temperatures and densities, the rates for relaxation between the quantum dot confined states and for capture from the barrier region into the various dot levels could be directly determined. For electron-hole pairs generated directly in the quantum dot excited state, relaxation is dominated by electron-hole scattering, and occurs on a 5-ps time scale. Capture times from the barrier into the quantum dot are on the order of 2 ps (into the excited state) and 10 ps (into the ground state). The phonon bottleneck was clearly observed in low-density capture experiments, and the conditions for its observation (namely, the suppression of electron-hole scattering for non-geminately captured electrons) were determined. As temperature increases beyond about 100 K, the dynamics become dominated by the reemission of carriers from the lower dot levels due to the large density of states in the wetting layer and barrier region. Measurements of the gain dynamics show fast (130-fs) gain recovery due to intradot carrier-carrier scattering, and picosecond-scale capture. Direct measurement of the transparency density versus temperature shows the dramatic effect of carrier reemission for the quantum dots to thermally activated scattering. The carrier dynamics at elevated temperatures are thus strongly dominated by the high density of the high-energy continuum states relative to the dot-confined levels. Deleterious hot carrier effects can be suppressed in quantum dot lasers by resonant tunneling injection.

Book Quantum Dots

Download or read book Quantum Dots written by Lucjan Jacak and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present an overview of the theoretical background and experimental re sults in the rapidly developing field of semiconductor quantum dots - systems 8 6 of dimensions as small as 10- -10- m (quasi-zero-dimensional) that contain a small and controllable number (1-1000) of electrons. The electronic structure of quantum dots, including the energy quan tization of the single-particle states (due to spatial confinement) and the evolution of these (Fock-Darwin) states in an increasing external magnetic field, is described. The properties of many-electron systems confined in a dot are also studied. This includes the separation of the center-of-mass mo tion for the parabolic confining potential (and hence the insensitivity of the transitions under far infrared radiation to the Coulomb interactions and the number of particles - the generalized Kohn theorem) and the effects due to Coulomb interactions (formation of the incompressible magic states at high magnetic fields and their relation to composite jermions), and finally the spin-orbit interactions. In addition, the excitonic properties of quantum dots are discussed, including the energy levels and the spectral function of a single exciton, the relaxation of confined carriers, the metastable states and their effect on the photoluminescence spectrum, the interaction of an exciton with carriers, and exciton condensation. The theoretical part of this work, which is based largely on original re sults obtained by the authors, has been supplemented with descriptions of various methods of creating quantum-dot structures.

Book Self Assembled Semiconductor Quantum Dots for Spin Based All Optical and Electronic Quantum Computing

Download or read book Self Assembled Semiconductor Quantum Dots for Spin Based All Optical and Electronic Quantum Computing written by and published by . This book was released on 2008 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt: This project involved the study of self-assembled quantum dots as hosts for spin based qubits. Both semiconductor quantum dots, nanowires, and organic quantum dots were studied and the spin relaxation times were measured. The organic Alq3 appears to have very long longitudinal spin relaxation time of nearly 1 second at a temperature of 100 K, and a nearly temperature independent transverse relaxation time> 3 nsec in the range 2-300 K. This relaxation time is sufficient to fulfill the Knill criterion for fault-tolerant quantum computing at room temperature. Since organics have special selection rules for radiative transitions whereby triplet electron-hole pairs are dark excitons and only singlets are radiative, there is a natural qubit read out scheme for organic quantum dots. We have also studied inorganic semiconductor quantum dots, but find them inferior to their organic counterparts for spin based quantum computing, primarily because spin-orbit interactions are much stronger in inorganic quantum dots, leading to much faster spin dephasing.

Book Optical and Electrical Properties of Single Self Assembled Quantum Dots in Lateral Electric Fields

Download or read book Optical and Electrical Properties of Single Self Assembled Quantum Dots in Lateral Electric Fields written by Malte Huck and published by diplom.de. This book was released on 2010-03-25 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inhaltsangabe:Abstract: Chapter 1: In this thesis we investigate the optical properties of self-assembled quantum dots exposed to a lateral electric field. As a result of the electric field the wave functions of electrons and holes inside the quantum dot are manipulated, which makes it possible to tune their energy levels and control the optical properties of the system. The possibility of tuning the emission energy of different few particle states using this method makes this system very promising for the use of a source of polarization entangled photons as discussed in the following sections. In Section 1.1 the concept of entangled states is introduced together with a brief historical overview. The possibility of using the exciton biexciton cascade of a self-assembled quantum dot for the generation of entangled photon pairs is presented in Section 1.2. Chapter 2: In this chapter we introduce the concept of quantum dots and demonstrate their optical emission properties. In Section 2.1 the quantum dot is introduced as a three-dimensional charge carrier trap. Several types of quantum dots are presented in an overview. In Section 2.2 we discuss the physical effects that occur on the way from bulk semiconductor material to the three-dimensional charge carrier confinement in the case of quantum dots. The growth of self-assembled quantum dot samples is the topic of Section 2.3, where the technique of molecular beam epitaxy is introduced (Section 2.3.1). This technique is used to grow the semiconductor quantum dots via heteroepitaxy in the Stranski-Krastanov growth mode (Section 2.3.2). Quantum dots are commonly referred to as artificial atoms due to their atomlike emission features. The origin for this expression is explained in Section 2.4 on the basis of the energetic structure of self-assembled quantum dots. The optical properties of quantum dots are discussed in Section 2.5, beginning with an introduction to the experimental setup that has been used to investigate the quantum dots during this thesis (Section 2.5.1). Different optical excitation modes are presented in Section 2.5.2 and in Section 2.5.3 we discuss, how to achieve a low enough quantum dot density on the analyzed samples. Section 2.5.4 deals with the photoluminescence of different exciton states and in Section 2.5.5 we present how these lines can be identified via power dependent measurements. Finally, the concept of initial charges in self-assembled quantum dots is presented in [...]

Book Capture and Relaxation in Semiconductor Quantum Dots

Download or read book Capture and Relaxation in Semiconductor Quantum Dots written by R. Ferreira and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lateral Alignment of Epitaxial Quantum Dots

Download or read book Lateral Alignment of Epitaxial Quantum Dots written by Oliver G. Schmidt and published by Springer Science & Business Media. This book was released on 2007-08-17 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the full range of possible strategies for laterally aligning self-assembled quantum dots on a substrate surface, beginning with pure self-ordering mechanisms and culminating with forced alignment by lithographic positioning. The text addresses both short- and long-range ordering phenomena and introduces future high integration of single quantum dot devices on a single chip. Contributions by well-known experts ensure that all relevant quantum-dot heterostructures are elucidated from diverse perspectives.

Book Semiconductor Quantum Dots II

Download or read book Semiconductor Quantum Dots II written by Rosa Leon and published by Cambridge University Press. This book was released on 2014-06-05 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book confirms the high level of international interest in understanding and control the properties of semiconductor quantum-dot structures and devices. It highlights the self-assembled (self-forming) type of quantum dots that result from the islanding transition in strained heteroepitaxy of III-V semiconductors. It also features nanocrystals, colloidal dots and biological applications. Technological applications span quantum-dot laser diodes, quantum-dot optical amplifiers, biosensing applications, infrared photodetectors, photovoltaic devices, quantum cellular automata and magnetic semiconductors. It reports the development by researchers at the Johannes Kepler University in Linz of a mid-infrared, vertical cavity surface emitting quantum dot (QD) using the lead salt compounds PbSe and PbEuTe; optical gain and stimulated emission in colloidal quantum dots and the use of quantum dots for optical amplifiers reported by researchers at the National Institute of Standards and Technology in Boulder. Topics include: theory, modeling and simulations; nanocrystals, colloidal dots and biological applications; quantum-dot-based devices and transport studies; carrier dynamics and interactions and energy relaxation and single-dot spectroscopy.

Book Self Organized Quantum Dots for Memories

Download or read book Self Organized Quantum Dots for Memories written by Tobias Nowozin and published by Springer Science & Business Media. This book was released on 2013-10-01 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s semiconductor memory market is divided between two types of memory: DRAM and Flash. Each has its own advantages and disadvantages. While DRAM is fast but volatile, Flash is non-volatile but slow. A memory system based on self-organized quantum dots (QDs) as storage node could combine the advantages of modern DRAM and Flash, thus merging the latter’s non-volatility with very fast write times. This thesis investigates the electronic properties of and carrier dynamics in self-organized quantum dots by means of time-resolved capacitance spectroscopy and time-resolved current measurements. The first aim is to study the localization energy of various QD systems in order to assess the potential of increasing the storage time in QDs to non-volatility. Surprisingly, it is found that the major impact of carrier capture cross-sections of QDs is to influence, and at times counterbalance, carrier storage in addition to the localization energy. The second aim is to study the coupling between a layer of self-organized QDs and a two-dimensional hole gas (2DHG), which is relevant for the read-out process in memory systems. The investigation yields the discovery of the many-particle ground states in the QD ensemble. In addition to its technological relevance, the thesis also offers new insights into the fascinating field of nanostructure physics.

Book Self Assembled InGaAs GaAs Quantum Dots

Download or read book Self Assembled InGaAs GaAs Quantum Dots written by and published by Academic Press. This book was released on 1999-04-05 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is concerned with the crystal growth, optical properties, and optical device application of the self-formed quantum dot, which is one of the major current subjects in the semiconductor research field. The atom-like density of states in quantum dots is expected to drastically improve semiconductor laser performance, and to develop new optical devices. However, since the first theoretical prediction for its great possibilities was presented in 1982, due to the difficulty of their fabrication process. Recently, the advent of self-organized quantum dots has made it possible to apply the results in important optical devices, and further progress is expected in the near future. The authors, working for Fujitsu Laboratories, are leading this quantum-dot research field. In this volume, they describe the state of the art in the entire field, with particular emphasis on practical applications.

Book Semiconductor Nanocrystals and Metal Nanoparticles

Download or read book Semiconductor Nanocrystals and Metal Nanoparticles written by Tupei Chen and published by CRC Press. This book was released on 2016-10-14 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor nanocrystals and metal nanoparticles are the building blocks of the next generation of electronic, optoelectronic, and photonic devices. Covering this rapidly developing and interdisciplinary field, the book examines in detail the physical properties and device applications of semiconductor nanocrystals and metal nanoparticles. It begins with a review of the synthesis and characterization of various semiconductor nanocrystals and metal nanoparticles and goes on to discuss in detail their optical, light emission, and electrical properties. It then illustrates some exciting applications of nanoelectronic devices (memristors and single-electron devices) and optoelectronic devices (UV detectors, quantum dot lasers, and solar cells), as well as other applications (gas sensors and metallic nanopastes for power electronics packaging). Focuses on a new class of materials that exhibit fascinating physical properties and have many exciting device applications. Presents an overview of synthesis strategies and characterization techniques for various semiconductor nanocrystal and metal nanoparticles. Examines in detail the optical/optoelectronic properties, light emission properties, and electrical properties of semiconductor nanocrystals and metal nanoparticles. Reviews applications in nanoelectronic devices, optoelectronic devices, and photonic devices.