Download or read book An Introduction to Branching Measure Valued Processes written by Evgeniĭ Borisovich Dynkin and published by American Mathematical Soc.. This book was released on 1994 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: For about half a century, two classes of stochastic processes---Gaussian processes and processes with independent increments---have played an important role in the development of stochastic analysis and its applications. During the last decade, a third class---branching measure-valued (BMV) processes---has also been the subject of much research. A common feature of all three classes is that their finite-dimensional distributions are infinitely divisible, allowing the use of the powerful analytic tool of Laplace (or Fourier) transforms. All three classes, in an infinite-dimensional setting, provide means for study of physical systems with infinitely many degrees of freedom. This is the first monograph devoted to the theory of BMV processes. Dynkin first constructs a large class of BMV processes, called superprocesses, by passing to the limit from branching particle systems. Then he proves that, under certain restrictions, a general BMV process is a superprocess. A special chapter is devoted to the connections between superprocesses and a class of nonlinear partial differential equations recently discovered by Dynkin.
Download or read book Measure Valued Branching Markov Processes written by Zenghu Li and published by Springer Science & Business Media. This book was released on 2010-11-10 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Measure-valued branching processes arise as high density limits of branching particle systems. The Dawson-Watanabe superprocess is a special class of those. The author constructs superprocesses with Borel right underlying motions and general branching mechanisms and shows the existence of their Borel right realizations. He then uses transformations to derive the existence and regularity of several different forms of the superprocesses. This treatment simplifies the constructions and gives useful perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The most important feature of the book is the systematic treatment of immigration superprocesses and generalized Ornstein--Uhlenbeck processes based on skew convolution semigroups. The volume addresses researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.
Download or read book Measure Valued Branching Markov Processes written by Zenghu Li and published by Springer Nature. This book was released on 2023-04-14 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a compact introduction to the theory of measure-valued branching processes, immigration processes and Ornstein–Uhlenbeck type processes. Measure-valued branching processes arise as high density limits of branching particle systems. The first part of the book gives an analytic construction of a special class of such processes, the Dawson–Watanabe superprocesses, which includes the finite-dimensional continuous-state branching process as an example. Under natural assumptions, it is shown that the superprocesses have Borel right realizations. Transformations are then used to derive the existence and regularity of several different forms of the superprocesses. This technique simplifies the constructions and gives useful new perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The second part investigates immigration structures associated with the measure-valued branching processes. The structures are formulated by skew convolution semigroups, which are characterized in terms of infinitely divisible probability entrance laws. A theory of stochastic equations for one-dimensional continuous-state branching processes with or without immigration is developed, which plays a key role in the construction of measure flows of those processes. The third part of the book studies a class of Ornstein-Uhlenbeck type processes in Hilbert spaces defined by generalized Mehler semigroups, which arise naturally in fluctuation limit theorems of the immigration superprocesses. This volume is aimed at researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.
Download or read book Measure valued Processes Stochastic Partial Differential Equations and Interacting Systems written by Donald Andrew Dawson and published by American Mathematical Soc.. This book was released on 1994-01-01 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this collection explore the connections between the rapidly developing fields of measure-valued processes, stochastic partial differential equations, and interacting particle systems, each of which has undergone profound development in recent years. Bringing together ideas and tools arising from these different sources, the papers include contributions to major directions of research in these fields, explore the interface between them, and describe newly developing research problems and methodologies. Several papers are devoted to different aspects of measure-valued branching processes (also called superprocesses). Some new classes of these processes are described, including branching in catalytic media, branching with change of mass, and multilevel branching. Sample path and spatial clumping properties of superprocesses are also studied. The papers on Fleming-Viot processes arising in population genetics include discussions of the role of genealogical structures and the application of the Dirichlet form methodology. Several papers are devoted to particle systems studied in statistical physics and to stochastic partial differential equations which arise as hydrodynamic limits of such systems. With overview articles on some of the important new developments in these areas, this book would be an ideal source for an advanced graduate course on superprocesses.
Download or read book Branching Measure valued Processes written by Evgeniĭ Borisovich Dynkin and published by . This book was released on 1992 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Stochastic Partial Differential Equations written by Sergey V. Lototsky and published by Springer. This book was released on 2017-07-06 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected to the material discussed at a particular place in the text. The questions usually ask to verify something, so that the reader already knows the answer and, if pressed for time, can move on. Accordingly, no solutions are provided, but there are often hints on how to proceed. The book will be of interest to everybody working in the area of stochastic analysis, from beginning graduate students to experts in the field.
Download or read book Spatial Branching Processes Random Snakes and Partial Differential Equations written by Jean-Francois Le Gall and published by Birkhäuser. This book was released on 2012-12-06 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces several remarkable new probabilistic objects that combine spatial motion with a continuous branching phenomenon and are closely related to certain semilinear partial differential equations (PDE). The Brownian snake approach is used to give a powerful representation of superprocesses and also to investigate connections between superprocesses and PDEs. These are notable because almost every important probabilistic question corresponds to a significant analytic problem.
Download or read book Measure valued Branching Processes written by Donald Andrew Dawson and published by Department of Mathematics and Statistics, Carleton University. This book was released on 1982 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Classical and Modern Branching Processes written by Krishna B. Athreya and published by Springer. This book was released on 1997 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications CLASSICAL AND MODERN BRANCHING PROCESSES is based on the proceedings with the same title and was an integral part of the 1993-94 IMA program on "Emerging Applications of Probability." We would like to thank Krishna B. Athreya and Peter J agers for their hard work in organizing this meeting and in editing the proceedings. We also take this opportunity to thank the National Science Foundation, the Army Research Office, and the National Security Agency, whose financial support made this workshop possible. A vner Friedman Robert Gulliver v PREFACE The IMA workshop on Classical and Modern Branching Processes was held during June 13-171994 as part of the IMA year on Emerging Appli cations of Probability. The organizers of the year long program identified branching processes as one of the active areas in which a workshop should be held. Krish na B. Athreya and Peter Jagers were asked to organize this. The topics covered by the workshop could broadly be divided into the following areas: 1. Tree structures and branching processes; 2. Branching random walks; 3. Measure valued branching processes; 4. Branching with dependence; 5. Large deviations in branching processes; 6. Classical branching processes.
Download or read book Markov Processes and Potential Theory written by and published by Academic Press. This book was released on 2011-08-29 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov Processes and Potential Theory
Download or read book On the Martingale Problem for Interactive Measure Valued Branching Diffusions written by Edwin Arend Perkins and published by American Mathematical Soc.. This book was released on 1995 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops stochastic integration with respect to ``Brownian trees'' and its associated stochastic calculus, with the aim of proving pathwise existence and uniqueness in a stochastic equation driven by a historical Brownian motion. Perkins uses these results and a Girsanov-type theorem to prove that the martingale problem for the historical process associated with a wide class of interactive branching measure-valued diffusions (superprocesses) is well-posed. The resulting measure-valued processes will arise as limits of the empirical measures of branching particle systems in which particles interact through their spatial motions or, to a lesser extent, through their branching rates.
Download or read book Ecole d Ete de Probabilites de Saint Flour XXI 1991 written by Donald A. Dawson and published by Springer. This book was released on 2006-11-14 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: CONTENTS: D.D. Dawson: Measure-valued Markov Processes.- B. Maisonneuve: Processus de Markov: Naissance, Retournement, Regeneration.- J. Spencer: Nine lectures on Random Graphs.
Download or read book An Introduction to Superprocesses written by Alison Etheridge and published by American Mathematical Soc.. This book was released on 2000 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 20 years, the study of superprocesses has expanded into a major industry and can now be regarded as a central theme in modern probability theory. This book is intended as a rapid introduction to the subject, geared toward graduate students and researchers in stochastic analysis. A variety of different approaches to the superprocesses emerged over the last ten years. Yet no one approach superseded any others. In this book, readers are exposed to a number of different ways of thinking about the processes, and each is used to motivate some key results. The emphasis is on why results are true rather than on rigorous proof. Specific results are given, including extensive references to current literature for their general form.
Download or read book Fractal Geometry and Stochastics IV written by Christoph Bandt and published by Springer Science & Business Media. This book was released on 2010-01-08 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last fifteen years fractal geometry has established itself as a substantial mathematical theory in its own right. The interplay between fractal geometry, analysis and stochastics has highly influenced recent developments in mathematical modeling of complicated structures. This process has been forced by problems in these areas related to applications in statistical physics, biomathematics and finance. This book is a collection of survey articles covering many of the most recent developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals. The authors were the keynote speakers at the conference "Fractal Geometry and Stochastics IV" at Greifswald in September 2008.
Download or read book Stochastic Partial Differential Equations and Applications II written by Giuseppe Da Prato and published by Springer. This book was released on 2006-11-14 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Dynkin Festschrift written by Mark I. Freidlin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Onishchik, A. A. Kirillov, and E. B. Vinberg, who obtained their first results on Lie groups in Dynkin's seminar. At a later stage, the work of the seminar was greatly enriched by the active participation of 1. 1. Pyatetskii Shapiro. As already noted, Dynkin started to work in probability as far back as his undergraduate studies. In fact, his first published paper deals with a problem arising in Markov chain theory. The most significant among his earliest probabilistic results concern sufficient statistics. In [15] and [17], Dynkin described all families of one-dimensional probability distributions admitting non-trivial sufficient statistics. These papers have considerably influenced the subsequent research in this field. But Dynkin's most famous results in probability concern the theory of Markov processes. Following Kolmogorov, Feller, Doob and Ito, Dynkin opened a new chapter in the theory of Markov processes. He created the fundamental concept of a Markov process as a family of measures corresponding to var ious initial times and states and he defined time homogeneous processes in terms of the shift operators ()t. In a joint paper with his student A.
Download or read book Three Classes Of Nonlinear Stochastic Partial Differential Equations written by Jie Xiong and published by World Scientific. This book was released on 2013-05-06 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of measure-valued processes in random environments has seen some intensive research activities in recent years whereby interesting nonlinear stochastic partial differential equations (SPDEs) were derived. Due to the nonlinearity and the non-Lipschitz continuity of their coefficients, new techniques and concepts have recently been developed for the study of such SPDEs. These include the conditional Laplace transform technique, the conditional mild solution, and the bridge between SPDEs and some kind of backward stochastic differential equations. This volume provides an introduction to these topics with the aim of attracting more researchers into this exciting and young area of research. It can be considered as the first book of its kind. The tools introduced and developed for the study of measure-valued processes in random environments can be used in a much broader area of nonlinear SPDEs.