Download or read book Boundary Stabilization of Parabolic Equations written by Ionuţ Munteanu and published by Springer. This book was released on 2019-02-15 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a technique, developed by the author, to design asymptotically exponentially stabilizing finite-dimensional boundary proportional-type feedback controllers for nonlinear parabolic-type equations. The potential control applications of this technique are wide ranging in many research areas, such as Newtonian fluid flows modeled by the Navier-Stokes equations; electrically conducted fluid flows; phase separation modeled by the Cahn-Hilliard equations; and deterministic or stochastic semi-linear heat equations arising in biology, chemistry, and population dynamics modeling. The text provides answers to the following problems, which are of great practical importance: Designing the feedback law using a minimal set of eigenfunctions of the linear operator obtained from the linearized equation around the target state Designing observers for the considered control systems Constructing time-discrete controllers requiring only partial knowledge of the state After reviewing standard notations and results in functional analysis, linear algebra, probability theory and PDEs, the author describes his novel stabilization algorithm. He then demonstrates how this abstract model can be applied to stabilization problems involving magnetohydrodynamic equations, stochastic PDEs, nonsteady-states, and more. Boundary Stabilization of Parabolic Equations will be of particular interest to researchers in control theory and engineers whose work involves systems control. Familiarity with linear algebra, operator theory, functional analysis, partial differential equations, and stochastic partial differential equations is required.
Download or read book Adaptive Control of Parabolic PDEs written by Andrey Smyshlyaev and published by Princeton University Press. This book was released on 2010-07-01 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a comprehensive methodology for adaptive control design of parabolic partial differential equations with unknown functional parameters, including reaction-convection-diffusion systems ubiquitous in chemical, thermal, biomedical, aerospace, and energy systems. Andrey Smyshlyaev and Miroslav Krstic develop explicit feedback laws that do not require real-time solution of Riccati or other algebraic operator-valued equations. The book emphasizes stabilization by boundary control and using boundary sensing for unstable PDE systems with an infinite relative degree. The book also presents a rich collection of methods for system identification of PDEs, methods that employ Lyapunov, passivity, observer-based, swapping-based, gradient, and least-squares tools and parameterizations, among others. Including a wealth of stimulating ideas and providing the mathematical and control-systems background needed to follow the designs and proofs, the book will be of great use to students and researchers in mathematics, engineering, and physics. It also makes a valuable supplemental text for graduate courses on distributed parameter systems and adaptive control.
Download or read book Boundary Control of PDEs written by Miroslav Krstic and published by SIAM. This book was released on 2008-01-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.
Download or read book Controllability and Stabilization of Parabolic Equations written by Viorel Barbu and published by Springer. This book was released on 2018-04-26 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents controllability and stabilization methods in control theory that solve parabolic boundary value problems. Starting from foundational questions on Carleman inequalities for linear parabolic equations, the author addresses the controllability of parabolic equations on a variety of domains and the spectral decomposition technique for representing them. This method is, in fact, designed for use in a wider class of parabolic systems that include the heat and diffusion equations. Later chapters develop another process that employs stabilizing feedback controllers with a finite number of unstable modes, with special attention given to its use in the boundary stabilization of Navier–Stokes equations for the motion of viscous fluid. In turn, these applied methods are used to explore related topics like the exact controllability of stochastic parabolic equations with linear multiplicative noise. Intended for graduate students and researchers working on control problems involving nonlinear differential equations, Controllability and Stabilization of Parabolic Equations is the distillation of years of lectures and research. With a minimum of preliminaries, the book leaps into its applications for control theory with both concrete examples and accessible solutions to problems in stabilization and controllability that are still areas of current research.
Download or read book Nonlinear Parabolic and Elliptic Equations written by C.V. Pao and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to the growing use of reaction diffusion problems in many fields, this monograph gives a systematic treatment of a class of nonlinear parabolic and elliptic differential equations and their applications these problems. It is an important reference for mathematicians and engineers, as well as a practical text for graduate students.
Download or read book Parabolic Equations in Biology written by Benoît Perthame and published by Springer. This book was released on 2015-09-09 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.
Download or read book Nonlinear Second Order Parabolic Equations written by Mingxin Wang and published by CRC Press. This book was released on 2021-05-12 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The parabolic partial differential equations model one of the most important processes in the real-world: diffusion. Whether it is the diffusion of energy in space-time, the diffusion of species in ecology, the diffusion of chemicals in biochemical processes, or the diffusion of information in social networks, diffusion processes are ubiquitous and crucial in the physical and natural world as well as our everyday lives. This book is self-contained and covers key topics such as the Lp theory and Schauder theory, maximum principle, comparison principle, regularity and uniform estimates, initial-boundary value problems of semilinear parabolic scalar equations and weakly coupled parabolic systems, the upper and lower solutions method, monotone properties and long-time behaviours of solutions, convergence of solutions and stability of equilibrium solutions, global solutions and finite time blowup. It also touches on periodic boundary value problems, free boundary problems, and semigroup theory. The book covers major theories and methods of the field, including topics that are useful but hard to find elsewhere. This book is based on tried and tested teaching materials used at the Harbin Institute of Technology over the past ten years. Special care was taken to make the book suitable for classroom teaching as well as for self-study among graduate students. About the Author: Mingxin Wang is Professor of Mathematics at Harbin Institute of Technology, China. He has published ten monographs and textbooks and 260 papers. He is also a supervisor of 30 PhD students.
Download or read book Degenerate Parabolic Equations written by Emmanuele DiBenedetto and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolved from the author's lectures at the University of Bonn's Institut für angewandte Mathematik, this book reviews recent progress toward understanding of the local structure of solutions of degenerate and singular parabolic partial differential equations.
Download or read book Optimization and Approximation written by Pablo Pedregal and published by Springer. This book was released on 2017-09-07 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.
Download or read book Energy Methods for Free Boundary Problems written by S.N. Antontsev and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences. What these problems have in common is their formulation in terms of suitably posed initial and boundary value problems for nonlinear partial differential equations. Such problems arise, for example, in the mathematical treatment of the processes of heat conduction, filtration through porous media, flows of non-Newtonian fluids, boundary layers, chemical reactions, semiconductors, and so on. The growing interest in these problems is reflected by the series of meetings held under the title "Free Boundary Problems: Theory and Applications" (Ox ford 1974, Pavia 1979, Durham 1978, Montecatini 1981, Maubuisson 1984, Irsee 1987, Montreal 1990, Toledo 1993, Zakopane 1995, Crete 1997, Chiba 1999). From the proceedings of these meetings, we can learn about the different kinds of mathematical areas that fall within the scope of free boundary problems. It is worth mentioning that the European Science Foundation supported a vast research project on free boundary problems from 1993 until 1999. The recent creation of the specialized journal Interfaces and Free Boundaries: Modeling, Analysis and Computation gives us an idea of the vitality of the subject and its present state of development. This book is a result of collaboration among the authors over the last 15 years.
Download or read book Control of Coupled Partial Differential Equations written by Karl Kunisch and published by Springer Science & Business Media. This book was released on 2007-08-08 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains selected contributions originating from the ‘Conference on Optimal Control of Coupled Systems of Partial Differential Equations’, held at the ‘Mathematisches Forschungsinstitut Oberwolfach’ in April 2005. With their articles, leading scientists cover a broad range of topics such as controllability, feedback-control, optimality systems, model-reduction techniques, analysis and optimal control of flow problems, and fluid-structure interactions, as well as problems of shape and topology optimization. Applications affected by these findings are distributed over all time and length scales starting with optimization and control of quantum mechanical systems, the design of piezoelectric acoustic micro-mechanical devices, or optimal control of crystal growth to the control of bodies immersed into a fluid, airfoil design, and much more. The book addresses advanced students and researchers in optimization and control of infinite dimensional systems, typically represented by partial differential equations. Readers interested either in theory or in numerical simulation of such systems will find this book equally appealing.
Download or read book Elementary Feedback Stabilization of the Linear Reaction Convection Diffusion Equation and the Wave Equation written by Weijiu Liu and published by Springer Science & Business Media. This book was released on 2009-12-01 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike abstract approaches to advanced control theory, this volume presents key concepts through concrete examples. Once the basic fundamentals are established, readers can apply them to solve other control problems of partial differential equations.
Download or read book Fluids Under Control written by Tomáš Bodnár and published by Springer Nature. This book was released on with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Representation and Control of Infinite Dimensional Systems written by Alain Bensoussan and published by Springer Science & Business Media. This book was released on 2007-04-05 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unified, revised second edition of a two-volume set is a self-contained account of quadratic cost optimal control for a large class of infinite-dimensional systems. The original editions received outstanding reviews, yet this new edition is more concise and self-contained. New material has been added to reflect the growth in the field over the past decade. There is a unique chapter on semigroup theory of linear operators that brings together advanced concepts and techniques which are usually treated independently. The material on delay systems and structural operators has not yet appeared anywhere in book form.
Download or read book Control Of Partial Differential Equations written by Jean-michel Coron and published by World Scientific. This book was released on 2023-04-11 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is mainly a collection of lecture notes for the 2021 LIASFMA International Graduate School on Applied Mathematics. It provides the readers some important results on the theory, the methods, and the application in the field of 'Control of Partial Differential Equations'. It is useful for researchers and graduate students in mathematics or control theory, and for mathematicians or engineers with an interest in control systems governed by partial differential equations.
Download or read book Tangential Boundary Stabilization of Navier Stokes Equations written by Viorel Barbu and published by American Mathematical Soc.. This book was released on 2006 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to inject dissipation as to force local exponential stabilization of the steady-state solutions, an Optimal Control Problem (OCP) with a quadratic cost functional over an infinite time-horizon is introduced for the linearized N-S equations. As a result, the same Riccati-based, optimal boundary feedback controller which is obtained in the linearized OCP is then selected and implemented also on the full N-S system. For $d=3$, the OCP falls definitely outside the boundaries of established optimal control theory for parabolic systems with boundary controls, in that the combined index of unboundedness--between the unboundedness of the boundary control operator and the unboundedness of the penalization or observation operator--is strictly larger than $\tfrac{3}{2}$, as expressed in terms of fractional powers of the free-dynamics operator. In contrast, established (and rich) optimal control theory [L-T.2] of boundary control parabolic problems and corresponding algebraic Riccati theory requires a combined index of unboundedness strictly less than 1. An additional preliminary serious difficulty to overcome lies at the outset of the program, in establishing that the present highly non-standard OCP--with the aforementioned high level of unboundedness in control and observation operators and subject, moreover, to the additional constraint that the controllers be pointwise tangential--be non-empty; that is, it satisfies the so-called Finite Cost Condition [L-T.2].
Download or read book Elliptic and Parabolic Problems written by Catherine Bandle and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Haim Brezis has made significant contributions in the fields of partial differential equations and functional analysis, and this volume collects contributions by his former students and collaborators in honor of his 60th anniversary at a conference in Gaeta. It presents new developments in the theory of partial differential equations with emphasis on elliptic and parabolic problems.