EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Bond Stress slip Mechanisms in High Performance Fiber Reinforced Cement Composites

Download or read book Bond Stress slip Mechanisms in High Performance Fiber Reinforced Cement Composites written by Aydée Patricia Guerrero Z. and published by . This book was released on 1999 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Performance Fiber Reinforced Cement Composites 2

Download or read book High Performance Fiber Reinforced Cement Composites 2 written by A.E. Naaman and published by CRC Press. This book was released on 1996-06-20 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: The leading international authorities bring together in this contributed volume the latest research and current thinking on advanced fiber reinforced cement composites. Under rigorous editorial control, 13 chapters map out the key properties and behaviour of these materials, which promise to extend their applications into many more areas in the coming years.

Book Behavior  Modeling  and Impact of Bond in Steel Reinforced High performance Fiber reinforced Cement based Composites

Download or read book Behavior Modeling and Impact of Bond in Steel Reinforced High performance Fiber reinforced Cement based Composites written by Matthew J. Bandelt and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: High-performance fiber-reinforced cement-based composites (HPFRCCs) are a class of cement-based materials that exhibit a psuedo strain-hardening behavior in uniaxial tension after first cracking, and retain residual strength in compression after crushing. The unique mechanical properties of HPFRCCs have led researchers to investigate their use in structural applications where damage tolerance and energy dissipation is needed. Research on structural applications of steel reinforced HPFRCCs members has shown enhanced damage tolerance, shear capacity, flexural strength, inelastic deformation capacity, and life cycle performance. Recent research has focused on the interaction between mild steel reinforcement and HPFRCCs for modeling and design purposes. When reinforced HPFRCCs have been subjected to direct tension, early strain hardening and reinforcement strain localization have been observed caused by short debonded lengths, as opposed to long debonded lengths in traditional reinforced concrete. Short debonded lengths caused the HPFRCC reinforcement to fracture at lower levels of specimen deformation compared to reinforced concrete. This recent research indicates that bond strength between reinforcement and HPFRCCs may be higher than that of traditional reinforced concrete. Additionally, reinforcement tensile strains may be an important consideration for design and modeling of reinforced HPFRCC structural components. In this dissertation, the bond behavior between steel reinforcement and HPFRCCs is presented through experimental testing and numerical simulations. Bond experiments were conducted under monotonic and cyclic loading conditions where the HPFRCC material surrounding the reinforcement was in a flexural tension stress state. Monotonic test results show that bond strengths are 37% higher, on average, in reinforced HPFRCCs than in reinforced concrete. Additionally, bond-slip toughness (i.e., the area under the bond stress versus reinforcement slip curve) is higher in reinforced HPFRCCs than in reinforced concrete. Cyclic bond-slip experiments were performed for two types of HPFRCCs and compared to monotonic behavior using beam-end specimens. Results show that bond deterioration occurs in HPFRCCs after the maximum bond stress is reached, causing bond stress to reduce by 60%, on average. The loss of bond capacity and bond-slip toughness is due to combined crushing and splitting of the interface. The effects of bond on structural performance are examined through a study on monotonic and cyclic performance of reinforced HPFRCC beam specimens with varying reinforcement ratios. It is shown that cyclic deformation histories can decrease deformation capacity by up to 67%. Unlike traditional reinforced concrete, deformation capacity of reinforced HPFRCCs is shown to increase with increasing longitudinal reinforcement ratio. Results show that the difference between monotonic and cyclic deformation capacity becomes smaller as reinforcement ratio increases. Suggestions are made for providing a moderate amount of reinforcement to take full of advantage of the HPFRCC material toughness and improve structural performance and deformation capacity. An interface bond-slip material model is proposed based on the experimental results to model the interaction between steel reinforcement and HPFRCC materials. Simulations with the proposed interface model are compared with perfect bond models in finite element simulations by comparing numerical and experimental responses of reinforced HPFRCC structural members. Simulations are conducted on reinforced HPFRCC components under monotonic and cyclic deformation histories, and on members with varying reinforcement ratios. Including the proposed interface material model reduces variability in simulated deformation capacity, and leads to a consistent response in terms of cracking patterns and deformation capacity. A methodology is proposed to predict reinforced HPFRCC deformation capacity by examining reinforcement strains, modeling the interface conditions, and implementing a cyclic fracture energy material parameter from test data. The dissertation concludes with suggestions for future research that can extend the work presented herein. Suggestions for future work include additional experimental, numerical, and design-related research.

Book PRO 30  4th International RILEM Workshop on High Performance Fiber Reinforced Cement Composites  HPFRCC 4

Download or read book PRO 30 4th International RILEM Workshop on High Performance Fiber Reinforced Cement Composites HPFRCC 4 written by Antoine E. Naaman and published by RILEM Publications. This book was released on 2003 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book PRO 6  3rd International RILEM Workshop on High Performance Fiber Reinforced Cement Composites  HPFRCC 3

Download or read book PRO 6 3rd International RILEM Workshop on High Performance Fiber Reinforced Cement Composites HPFRCC 3 written by Hans Wolfgang Reinhardt and published by RILEM Publications. This book was released on 1999 with total page 726 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High performance Hybrid fibre Concrete

Download or read book High performance Hybrid fibre Concrete written by Ivan Marković and published by IOS Press. This book was released on 2006 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In the research project presented in this PhD-thesis, an innovative type of fibre concrete is developed, with improved both the tensile strength and the ductility: the Hybrid-Fibre Concrete (HFC). The expression "Hybrid" refers to the "hybridisation" of fibres: short and long steel fibres were combined together in one concrete mixture. This is opposite to conventional steel fibre concretes, which contain only one type of fibre. The basic goal of combining short and long fibres is from one side to improve the tensile strength by the action of short fibres, and from the other side to improve the ductility by the action of long fibres." "In this research project, all important aspects needed for the development and application of Hybrid-Fibre Concrete have been considered. In total 15 mixtures, with different types and amounts of steel fibres were developed and tested in the fresh state (workability) as well as in the hardened state (uniaxial tensile tests, flexural tests, pullout tests of single fibres and compressive tests). A new analytical model for bridging of cracks by fibres was developed and successfully implemented for tensile softening response of HFC. At the end, the utilisation of HFC in the engineering practice was discussed, including a case-study on light prestressed long-span beams made of HFC."--BOOK JACKET.

Book High Performance Fiber Reinforced Cement Composites

Download or read book High Performance Fiber Reinforced Cement Composites written by and published by . This book was released on 2003 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Performance Fiber Reinforced Cement Composites 6

Download or read book High Performance Fiber Reinforced Cement Composites 6 written by Gustavo J. Parra-Montesinos and published by Springer Science & Business Media. This book was released on 2012-01-28 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, design engineers, material scientists.

Book Tension Stiffening in Reinforced High Performance Fiber Reinforced Cement Based Composites

Download or read book Tension Stiffening in Reinforced High Performance Fiber Reinforced Cement Based Composites written by Daniel Mauricio Moreno Luna and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Cement-based composites, such as concrete, are extensively used in a variety of structural applications. However, concrete exhibits a brittle tensile behavior that could lead to reduced durability and structural performance in the long term. The use of discontinuous fibers to reduce the brittleness of the concrete, and improve its post-cracking tensile behavior, has been a focus of structural materials research since the 1960's. Cement-based materials reinforced with short discontinuous fibers are known as Fiber Reinforced Composites (FRC). High Performance Fiber Reinforced Cement-based Composites (HPFRCC) are a special type of FRC materials that exhibit tensile strain-hardening behavior under varied types of loading conditions such as direct tension or bending. The use of HPFRCC materials in structural applications has shown to improve not only durability and long term performance, but also has proven to enhance inelastic load-deformation behavior, ductility, energy dissipation and shear capacity. The use of HPFRCC materials can also result in a potential reduction of steel reinforcement required for both flexure and shear relative to traditional reinforced concrete structures. The interaction between the mild steel and the ductile HPFRCC matrix in tension was investigated in contrast to that of normal weight concrete. The measured responses demonstrated both the tension stiffening effects of HPFRCC materials as well as the early strain hardening and fracture of the reinforcing bar relative to that in a normal weight concrete observed through full specimen response up to fracturing of the reinforcement. All of the HPFRCC specimens tested exhibited multiple cracking in uniaxial tension. Splitting cracks observed in the concrete at low specimen strain levels and in HyFRC and SC-HyFRC specimens at higher specimen strain levels contributed to the spreading of strain along the reinforcing bar in those specimens, resulting in a larger displacement capacity relative to the ECC specimens, which did not exhibit splitting cracks. Early strain hardening is hypothesized to be the reason for the additional strength observed in specimens subjected to flexure where the interaction between the steel and the HPFRCC matrix plays an important role in the load-displacement response. A modified approach for estimating the flexural capacity of a section of reinforced HPFRCC using experimental tension stiffening data was proposed and demonstrated to improve the accuracy of flexural capacity predictions. Two-dimensional finite element modeling approaches using a total strain based constitutive model were investigated. The numerical simulations demonstrated the relevance of using standard characterization tests to define the tensile and compressive stress-strain curves for the material constitutive model. The simulations capture the initial and post cracking stiffness, load at first cracking, load and strain at localization and deformation capacity observed in the experiments. Multiple cracking was observed in the numerical simulations for the ECC and HyFRC. The models were able to simulate the cracking progression and localization of strains at primary and secondary cracks for the ECC and the HyFRC. The numerical simulations that used the splitting bond-slip model captured the distribution of the strains in the steel better than perfect bond and pull-out bond-slip models as the slip in the interface allowed for a less localized failure of the specimens, especially in the ECC models. The models were also able to accurately capture the early hardening behavior observed in the experiments. A methodology to estimate the flexural strength of HPFRCC structural components by using numerical simulation of tension stiffening has been proposed and validated on a high performance fiber reinforced concrete (HPFRC) infill panel and ECC and HyFRC beams. This methodology serves as an extension of the methodology proposed using experimental tension stiffening results. In the absence of additional experiments, numerical simulation is proposed. A good level of accuracy has been found between the predicted and actual flexural capacities of the investigated components. The proposed methodology is based on the current assumptions from planar analysis used in the calculation of flexural strength in reinforced concrete components.

Book Strain Hardening Cement Based Composites

Download or read book Strain Hardening Cement Based Composites written by Viktor Mechtcherine and published by Springer. This book was released on 2017-09-04 with total page 811 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the proceedings of the 4th International Conference on Strain-Hardening Cement-Based Composites (SHCC4), that was held at the Technische Universität Dresden, Germany from 18 to 20 September 2017. The conference focused on advanced fiber-reinforced concrete materials such as strain-hardening cement-based composites (SHCC), textile-reinforced concrete (TRC) and high-performance fiber-reinforced cement-based composites (HPFRCC). All these new materials exhibit pseudo-ductile behavior resulting from the formation of multiple, fine cracks when subject to tensile loading. The use of such types of fiber-reinforced concrete could revolutionize the planning, development, dimensioning, structural and architectural design, construction of new and strengthening and repair of existing buildings and structures in many areas of application. The SHCC4 Conference was the follow-up of three previous successful international events in Stellenbosch, South Africa in 2009, Rio de Janeiro, Brazil in 2011, and Dordrecht, The Netherlands in 2014.

Book Mechanics of Fiber and Textile Reinforced Cement Composites

Download or read book Mechanics of Fiber and Textile Reinforced Cement Composites written by Barzin Mobasher and published by CRC Press. This book was released on 2011-09-20 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among all building materials, concrete is the most commonly used-and there is a staggering demand for it. However, as we strive to build taller structures with improved seismic resistance or durable pavement with an indefinite service life, we require materials with better performance than the conventional materials used today. Considering the enor

Book Shotcrete

Download or read book Shotcrete written by E.S. Bernard and published by CRC Press. This book was released on 2020-12-18 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reference for shotcrete technologists and practitioners on this method of concrete placement and its great scope for adaptability, optimization, and error. The text assesses laboratory research projects and also focusses on innovative developments in this field.

Book High performance Construction Materials  Science And Applications

Download or read book High performance Construction Materials Science And Applications written by Caijun Shi and published by World Scientific. This book was released on 2008-06-11 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a number of high-performance construction materials, including concrete, steel, fiber-reinforced cement, fiber-reinforced plastics, polymeric materials, geosynthetics, masonry materials and coatings. It discusses the scientific bases for the manufacture and use of these high-performance materials. Testing and application examples are also included, in particular the application of relatively new high-performance construction materials to design practice.Most books dealing with construction materials typically address traditional materials only rather than high-performance materials and, as a consequence, do not satisfy the increasing demands of today's society. On the other hand, books dealing with materials science are not engineering-oriented, with limited coverage of the application to engineering practice. This book is thus unique in reflecting the great advances made on high-performance construction materials in recent years.This book is appropriate for use as a textbook for courses in engineering materials, structural materials and civil engineering materials at the senior undergraduate and graduate levels. It is also suitable for use by practice engineers, including construction, materials, mechanical and civil engineers.

Book Bond of Reinforcement in Concrete

Download or read book Bond of Reinforcement in Concrete written by fib Fédération internationale du béton and published by fib Fédération internationale du béton. This book was released on 2000-01-01 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In 1993, the CEB Commission 2 Material and Behavior Modelling established the Task Group 2.5 Bond Models. It's terms of reference were ... to write a state-of-art report concerning bond of reinforcement in concrete and later recommend how the knowledge could be applied in practice (Model Code like text proposal)... {This work} covers the first part ... the state-of-art report."--Pref.

Book TENSILE STRAIN HARDENING OF HIGH PERFORMANCE FIBER REINFORCED CEMENT BASED COMPOSITES

Download or read book TENSILE STRAIN HARDENING OF HIGH PERFORMANCE FIBER REINFORCED CEMENT BASED COMPOSITES written by PRIJATMADI TJIPTOBROTO and published by . This book was released on 1991 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: very desirable load-deformation behavior known as "strain hardening" which is an increase in load carrying capacity with increasing strain up to the peak-load.

Book Textile Reinforced Cement Composites

Download or read book Textile Reinforced Cement Composites written by Jan Wastiels and published by MDPI. This book was released on 2020-03-05 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Issue presents the latest advances in the field of Textile-Reinforced Cement Composites, including Textile-Reinforced Concrete (TRC), Textile-Reinforced Mortar (TRM), Fabric-Reinforced Cementitious Matrix (FRCM), etc. These composite materials distinguish themselves from other fibre-reinforced concrete materials by their strain-hardening behaviour under tensile loading. This Special Issue is composed of 14 papers covering new insights in structural and material engineering. The papers include investigations on the level of the fibre reinforcement system as well as on the level of the composites, investigating their impact and fatigue behaviour, durability and fire behaviour. Both the strengthening of existing structures and the development of new structural systems such as lightweight sandwich systems are presented, and analysis and design methods are discussed. This Special Issue demonstrates the broadness and intensity of the ongoing advancements in the field of Textile-Reinforced Cement composites and the importance of several future research directions.