EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras

Download or read book Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras written by Victor G. Kac and published by World Scientific. This book was released on 1987 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of a series of lectures given by Prof. V Kac at Tata Institute, India in Dec '85 and Jan '86. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite-dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra glì of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These algebras appear in the lectures twice, in the reduction theory of soliton equations (KP ? KdV) and in the Sugawara construction as the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite-dimensional Lie algebras; and to physicists, this theory is turning into an important component of such domains of theoretical physics as soliton theory, theory of two-dimensional statistical models, and string theory.

Book Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras

Download or read book Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras written by Victor G. Kac and published by World Scientific. This book was released on 2013 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this book incorporates, as its first part, the largely unchanged text of the first edition, while its second part is the collection of lectures on vertex algebras, delivered by Professor Kac at the TIFR in January 2003. The basic idea of these lectures was to demonstrate how the key notions of the theory of vertex algebras--such as quantum fields, their normal ordered product and lambda-bracket, energy-momentum field and conformal weight, untwisted and twisted representations--simplify and clarify the constructions of the first edition of the book. -- Cover.

Book Bombay Lectures On Highest Weight Representations Of Infinite Dimensional Lie Algebras  2nd Edition

Download or read book Bombay Lectures On Highest Weight Representations Of Infinite Dimensional Lie Algebras 2nd Edition written by Ashok K Raina and published by World Scientific. This book was released on 2013-07-05 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this book is a collection of a series of lectures given by Professor Victor Kac at the TIFR, Mumbai, India in December 1985 and January 1986. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gℓ∞ of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These Lie algebras appear in the lectures in connection to the Sugawara construction, which is the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra. In particular, the book provides a complete proof of the Kac determinant formula, the key result in representation theory of the Virasoro algebra.The second edition of this book incorporates, as its first part, the largely unchanged text of the first edition, while its second part is the collection of lectures on vertex algebras, delivered by Professor Kac at the TIFR in January 2003. The basic idea of these lectures was to demonstrate how the key notions of the theory of vertex algebras — such as quantum fields, their normal ordered product and lambda-bracket, energy-momentum field and conformal weight, untwisted and twisted representations — simplify and clarify the constructions of the first edition of the book.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite dimensional Lie algebras and of the theory of vertex algebras; and to physicists, these theories are turning into an important component of such domains of theoretical physics as soliton theory, conformal field theory, the theory of two-dimensional statistical models, and string theory.

Book Highest Weight Representations Of Infinite Dimensional Lie Algebra

Download or read book Highest Weight Representations Of Infinite Dimensional Lie Algebra written by Victor G Kac and published by World Scientific. This book was released on 1988-04-01 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of a series of lectures given by Prof. V Kac at Tata Institute, India in Dec '85 and Jan '86. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite-dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gl∞ of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These algebras appear in the lectures twice, in the reduction theory of soliton equations (KP → KdV) and in the Sugawara construction as the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite-dimensional Lie algebras; and to physicists, this theory is turning into an important component of such domains of theoretical physics as soliton theory, theory of two-dimensional statistical models, and string theory.

Book Kac Moody Lie Algebras and Related Topics

Download or read book Kac Moody Lie Algebras and Related Topics written by Neelacanta Sthanumoorthy and published by American Mathematical Soc.. This book was released on 2004 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the proceedings of the Ramanujan International Symposium on Kac-Moody Lie algebras and their applications. The symposium provided researchers in mathematics and physics with the opportunity to discuss new developments in this rapidly-growing area of research. The book contains several excellent articles with new and significant results. It is suitable for graduate students and researchers working in Kac-Moody Lie algebras, their applications, and related areas of research.

Book Lie Algebras  Lie Superalgebras  Vertex Algebras and Related Topics

Download or read book Lie Algebras Lie Superalgebras Vertex Algebras and Related Topics written by Kailash C. Misra and published by American Mathematical Soc.. This book was released on 2016-06-28 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the 2012–2014 Southeastern Lie Theory Workshop Series held at North Carolina State University in April 2012, at College of Charleston in December 2012, at Louisiana State University in May 2013, and at University of Georgia in May 2014. Some of the articles by experts in the field survey recent developments while others include new results in representations of Lie algebras, and quantum groups, vertex (operator) algebras and Lie superalgebras.

Book Lie Algebras  Part 2

    Book Details:
  • Author : E.A. de Kerf
  • Publisher : Elsevier
  • Release : 1997-10-30
  • ISBN : 0080535461
  • Pages : 565 pages

Download or read book Lie Algebras Part 2 written by E.A. de Kerf and published by Elsevier. This book was released on 1997-10-30 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the long awaited follow-up to Lie Algebras, Part I which covered a major part of the theory of Kac-Moody algebras, stressing primarily their mathematical structure. Part II deals mainly with the representations and applications of Lie Algebras and contains many cross references to Part I. The theoretical part largely deals with the representation theory of Lie algebras with a triangular decomposition, of which Kac-Moody algebras and the Virasoro algebra are prime examples. After setting up the general framework of highest weight representations, the book continues to treat topics as the Casimir operator and the Weyl-Kac character formula, which are specific for Kac-Moody algebras. The applications have a wide range. First, the book contains an exposition on the role of finite-dimensional semisimple Lie algebras and their representations in the standard and grand unified models of elementary particle physics. A second application is in the realm of soliton equations and their infinite-dimensional symmetry groups and algebras. The book concludes with a chapter on conformal field theory and the importance of the Virasoro and Kac-Moody algebras therein.

Book Representations of Lie Algebras  Quantum Groups and Related Topics

Download or read book Representations of Lie Algebras Quantum Groups and Related Topics written by Naihuan Jing and published by American Mathematical Soc.. This book was released on 2018-08-21 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Representations of Lie Algebras, Quantum Groups and Related Topics, held from November 12–13, 2016, at North Carolina State University, Raleigh, North Carolina. The articles cover various aspects of representations of Kac–Moody Lie algebras and their applications, structure of Leibniz algebras and Krichever–Novikov algebras, representations of quantum groups, and related topics.

Book Non associative Structures and Other Related Structures

Download or read book Non associative Structures and Other Related Structures written by Florin Felix Nichita and published by MDPI. This book was released on 2020-06-16 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leonhard Euler (1707–1783) was born in Basel, Switzerland. Euler's formula is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. When its variable is the number pi, Euler's formula evaluates to Euler's identity. On the other hand, the Yang–Baxter equation is considered the most beautiful equation by many scholars. In this book, we study connections between Euler’s formulas and the Yang–Baxter equation. Other interesting sections include: non-associative algebras with metagroup relations; branching functions for admissible representations of affine Lie Algebras; super-Virasoro algebras; dual numbers; UJLA structures; etc.

Book Noncommutative Distributions

Download or read book Noncommutative Distributions written by Sergio Albeverio and published by CRC Press. This book was released on 1993-08-26 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering important aspects of the theory of unitary representations of nuclear Lie groups, this self-contained reference presents the general theory of energy representations and addresses various extensions of path groups and algebras.;Requiring only a general knowledge of the theory of unitary representations, topological groups and elementary stochastic analysis, Noncommutative Distributions: examines a theory of noncommutative distributions as irreducible unitary representations of groups of mappings from a manifold into a Lie group, with applications to gauge-field theories; describes the energy representation when the target Lie group G is compact; discusses representations of G-valued jet bundles when G is not necessarily compact; and supplies a synthesis of deep results on quasi-simple Lie algebras.;Providing over 200 bibliographic citations, drawings, tables, and equations, Noncommutative Distributions is intended for research mathematicians and theoretical and mathematical physicists studying current algebras, the representation theory of Lie groups, and quantum field theory, and graduate students in these disciplines.

Book Theta Functions  Bowdoin 1987

Download or read book Theta Functions Bowdoin 1987 written by Leon Ehrenpreis and published by American Mathematical Soc.. This book was released on 1989 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: During his long and productive career, Salomon Bochner worked in a variety of different areas of mathematics. This four part set brings together his collected papers, illustrating the range and depth of his mathematical interests. The books are available either individually or as a set.

Book Differential Geometric Methods In Theoretical Physics   Proceedings Of The Xx International Conference  In 2 Volumes

Download or read book Differential Geometric Methods In Theoretical Physics Proceedings Of The Xx International Conference In 2 Volumes written by Sultan Catto and published by World Scientific. This book was released on 1992-01-27 with total page 1228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings reports on some of the most recent advances on the interaction between Differential Geometry and Theoretical Physics, a very active and exciting area of contemporary research.The papers are grouped into the following four broad categories: Geometric Methods, Noncommutative Geometry, Quantum Gravity and Topological Quantum Field Theory. A few of the topics covered are Chern-Simons Theory and Generalizations, Knot Invariants, Models of 2D Gravity, Quantum Groups and Strings on Black Holes.

Book Classical And Quantum Mechanics With Lie Algebras

Download or read book Classical And Quantum Mechanics With Lie Algebras written by Yair Shapira and published by World Scientific. This book was released on 2021-07-19 with total page 711 pages. Available in PDF, EPUB and Kindle. Book excerpt: How to see physics in its full picture? This book offers a new approach: start from math, in its simple and elegant tools: discrete math, geometry, and algebra, avoiding heavy analysis that might obscure the true picture. This will get you ready to master a few fundamental topics in physics: from Newtonian mechanics, through relativity, towards quantum mechanics.Thanks to simple math, both classical and modern physics follow and make a complete vivid picture of physics. This is an original and unified point of view to highlighting physics from a fresh pedagogical angle.Each chapter ends with a lot of relevant exercises. The exercises are an integral part of the chapter: they teach new material and are followed by complete solutions. This is a new pedagogical style: the reader takes an active part in discovering the new material, step by step, exercise by exercise.The book could be used as a textbook in undergraduate courses such as Introduction to Newtonian mechanics and special relativity, Introduction to Hamiltonian mechanics and stability, Introduction to quantum physics and chemistry, and Introduction to Lie algebras with applications in physics.

Book Categorical  Combinatorial and Geometric Representation Theory and Related Topics

Download or read book Categorical Combinatorial and Geometric Representation Theory and Related Topics written by Pramod N. Achar and published by American Mathematical Society. This book was released on 2024-07-11 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.

Book Algebraic Combinatorics and the Monster Group

Download or read book Algebraic Combinatorics and the Monster Group written by Alexander A. Ivanov and published by Cambridge University Press. This book was released on 2023-08-17 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current state of knowledge on the Monster group, including Majorana theory, Vertex Operator Algebras, Moonshine and maximal subgroups.

Book Important Developments in Soliton Theory

Download or read book Important Developments in Soliton Theory written by A.S. Fokas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last ten to fifteen years there have been many important developments in the theory of integrable equations. This period is marked in particular by the strong impact of soliton theory in many diverse areas of mathematics and physics; for example, algebraic geometry (the solution of the Schottky problem), group theory (the discovery of quantum groups), topology (the connection of Jones polynomials with integrable models), and quantum gravity (the connection of the KdV with matrix models). This is the first book to present a comprehensive overview of these developments. Numbered among the authors are many of the most prominent researchers in the field.

Book Vertex Algebras and Algebraic Curves

Download or read book Vertex Algebras and Algebraic Curves written by Edward Frenkel and published by American Mathematical Soc.. This book was released on 2004-08-25 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.