EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Biostatistics Using JMP

Download or read book Biostatistics Using JMP written by Trevor Bihl and published by SAS Institute. This book was released on 2017-10-03 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyze your biostatistics data with JMP! Trevor Bihl's Biostatistics Using JMP: A Practical Guide provides a practical introduction on using JMP, the interactive statistical discovery software, to solve biostatistical problems. Providing extensive breadth, from summary statistics to neural networks, this essential volume offers a comprehensive, step-by-step guide to using JMP to handle your data. The first biostatistical book to focus on software, Biostatistics Using JMP discusses such topics as data visualization, data wrangling, data cleaning, histograms, box plots, Pareto plots, scatter plots, hypothesis tests, confidence intervals, analysis of variance, regression, curve fitting, clustering, classification, discriminant analysis, neural networks, decision trees, logistic regression, survival analysis, control charts, and metaanalysis. Written for university students, professors, those who perform biological/biomedical experiments, laboratory managers, and research scientists, Biostatistics Using JMP provides a practical approach to using JMP to solve your biostatistical problems.

Book Introduction to Biostatistics with JMP

Download or read book Introduction to Biostatistics with JMP written by Steve Figard and published by SAS Institute. This book was released on 2019-10-04 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore biostatistics using JMP® in this refreshing introduction Presented in an easy-to-understand way, Introduction to Biostatistics with JMP® introduces undergraduate students in the biological sciences to the most commonly used (and misused) statistical methods that they will need to analyze their experimental data using JMP. It covers many of the basic topics in statistics using biological examples for exercises so that the student biologists can see the relevance to future work in the problems addressed. The book starts by teaching students how to become confident in executing the right analysis by thinking like a statistician then moves into the application of specific tests. Using the powerful capabilities of JMP, the book addresses problems requiring analysis by chi-square tests, t tests, ANOVA analysis, various regression models, DOE, and survival analysis. Topics of particular interest to the biological or health science field include odds ratios, relative risk, and survival analysis. The author uses an engaging, conversational tone to explain concepts and keep readers interested in learning more. The book aims to create bioscientists who can competently incorporate statistics into their investigative toolkits to solve biological research questions as they arise.

Book Data Management and Analysis Using JMP

Download or read book Data Management and Analysis Using JMP written by Jane E Oppenlander and published by SAS Institute. This book was released on 2017-10-17 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: A holistic, step-by-step approach to analyzing health care data! Written for both beginner and intermediate JMP users working in or studying health care, Data Management and Analysis Using JMP: Health Care Case Studies bridges the gap between taking traditional statistics courses and successfully applying statistical analysis in the workplace. Authors Jane Oppenlander and Patricia Schaffer begin by illustrating techniques to prepare data for analysis, followed by presenting effective methods to summarize, visualize, and analyze data. The statistical analysis methods covered in the book are the foundational techniques commonly applied to meet regulatory, operational, budgeting, and research needs in the health care field. This example-driven book shows practitioners how to solve real-world problems by using an approach that includes problem definition, data management, selecting the appropriate analysis methods, step-by-step JMP instructions, and interpreting statistical results in context. Practical strategies for selecting appropriate statistical methods, remediating data anomalies, and interpreting statistical results in the domain context are emphasized. The cases presented in Data Management and Analysis Using JMP use multiple statistical methods. A progression of methods--from univariate to multivariate--is employed, illustrating a logical approach to problem-solving. Much of the data used in these cases is open source and drawn from a variety of health care settings. The book offers a welcome guide to working professionals as well as students studying statistics in health care-related fields.

Book Out of Print  Essentials of Biostatistics in Public Health

Download or read book Out of Print Essentials of Biostatistics in Public Health written by Lisa M. Sullivan and published by Jones & Bartlett Publishers. This book was released on 2011-03-24 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a presentation style that is clear and straightforward, the text uses examples that are real, relevant, and manageable in size so that students can focus on applications rather than become overwhelmed by computations. This text is just one offering in Jones and Bartlett's unique Essential Public Health Series. Important Notice: The digital edition of this book is missing some of the images or content found in the physical edition.

Book Discovering Partial Least Squares with JMP

Download or read book Discovering Partial Least Squares with JMP written by Ian Cox and published by SAS Institute. This book was released on 2013-10 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using JMP statistical discovery software from SAS, Discovering Partial Least Squares with JMP explores Partial Least Squares and positions it within the more general context of multivariate analysis. This book motivates current and potential users of JMP to extend their analytical repertoire by embracing PLS. Dynamically interacting with JMP, you will develop confidence as you explore underlying concepts and work through the examples. The authors provide background and guidance to support and empower you on this journey.

Book JMP for Mixed Models

    Book Details:
  • Author : Ruth Hummel
  • Publisher : SAS Institute
  • Release : 2021-06-09
  • ISBN : 1952363853
  • Pages : 380 pages

Download or read book JMP for Mixed Models written by Ruth Hummel and published by SAS Institute. This book was released on 2021-06-09 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the power of mixed models with JMP and JMP Pro. Mixed models are now the mainstream method of choice for analyzing experimental data. Why? They are arguably the most straightforward and powerful way to handle correlated observations in designed experiments. Reaching well beyond standard linear models, mixed models enable you to make accurate and precise inferences about your experiments and to gain deeper understanding of sources of signal and noise in the system under study. Well-formed fixed and random effects generalize well and help you make the best data-driven decisions. JMP for Mixed Models brings together two of the strongest traditions in SAS software: mixed models and JMP. JMP’s groundbreaking philosophy of tight integration of statistics with dynamic graphics is an ideal milieu within which to learn and apply mixed models, also known as hierarchical linear or multilevel models. If you are a scientist or engineer, the methods described herein can revolutionize how you analyze experimental data without the need to write code. Inside you’ll find a rich collection of examples and a step-by-step approach to mixed model mastery. Topics include: Learning how to appropriately recognize, set up, and interpret fixed and random effects Extending analysis of variance (ANOVA) and linear regression to numerous mixed model designs Understanding how degrees of freedom work using Skeleton ANOVA Analyzing randomized block, split-plot, longitudinal, and repeated measures designs Introducing more advanced methods such as spatial covariance and generalized linear mixed models Simulating mixed models to assess power and other important sampling characteristics Providing a solid framework for understanding statistical modeling in general Improving perspective on modern dilemmas around Bayesian methods, p-values, and causal inference

Book Risk Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS

Download or read book Risk Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS written by Richard C. Zink and published by SAS Institute. This book was released on 2014-07-01 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improve efficiency while reducing costs in clinical trials with centralized monitoring techniques using JMP and SAS. International guidelines recommend that clinical trial data should be actively reviewed or monitored; the well-being of trial participants and the validity and integrity of the final analysis results are at stake. Traditional interpretation of this guidance for pharmaceutical trials has led to extensive on-site monitoring, including 100% source data verification. On-site review is time consuming, expensive (estimated at up to a third of the cost of a clinical trial), prone to error, and limited in its ability to provide insight for data trends across time, patients, and clinical sites. In contrast, risk-based monitoring (RBM) makes use of central computerized review of clinical trial data and site metrics to determine if and when clinical sites should receive more extensive quality review or intervention. Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS presents a practical implementation of methodologies within JMP Clinical for the centralized monitoring of clinical trials. Focused on intermediate users, this book describes analyses for RBM that incorporate and extend the recommendations of TransCelerate Biopharm Inc., methods to detect potential patient-or investigator misconduct, snapshot comparisons to more easily identify new or modified data, and other novel visual and analytical techniques to enhance safety and quality reviews. Further discussion highlights recent regulatory guidance documents on risk-based approaches, addresses the requirements for CDISC data, and describes methods to supplement analyses with data captured external to the study database. Given the interactive, dynamic, and graphical nature of JMP Clinical, any individual from the clinical trial team - including clinicians, statisticians, data managers, programmers, regulatory associates, and monitors - can make use of this book and the numerous examples contained within to streamline, accelerate, and enrich their reviews of clinical trial data. The analytical methods described in Risk-Based Monitoring and Fraud Detection in Clinical Trials Using JMP and SAS enable the clinical trial team to take a proactive approach to data quality and safety to streamline clinical development activities and address shortcomings while the study is ongoing. This book is part of the SAS Press

Book Statistical Data Analysis Using SAS

Download or read book Statistical Data Analysis Using SAS written by Mervyn G. Marasinghe and published by Springer. This book was released on 2018-04-12 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitable for a second course in applied statistics with every method explained using SAS analysis to illustrate a real-world problem. New to this edition: • Covers SAS v9.2 and incorporates new commands • Uses SAS ODS (output delivery system) for reproduction of tables and graphics output • Presents new commands needed to produce ODS output • All chapters rewritten for clarity • New and updated examples throughout • All SAS outputs are new and updated, including graphics • More exercises and problems • Completely new chapter on analysis of nonlinear and generalized linear models • Completely new appendix Mervyn G. Marasinghe, PhD, is Associate Professor Emeritus of Statistics at Iowa State University, where he has taught courses in statistical methods and statistical computing. Kenneth J. Koehler, PhD, is University Professor of Statistics at Iowa State University, where he teaches courses in statistical methodology at both graduate and undergraduate levels and primarily uses SAS to supplement his teaching.

Book Implementing CDISC Using SAS

Download or read book Implementing CDISC Using SAS written by Chris Holland and published by SAS Institute. This book was released on 2019-05-30 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: For decades researchers and programmers have used SAS to analyze, summarize, and report clinical trial data. Now Chris Holland and Jack Shostak have updated their popular Implementing CDISC Using SAS, the first comprehensive book on applying clinical research data and metadata to the Clinical Data Interchange Standards Consortium (CDISC) standards. Implementing CDISC Using SAS: An End-to-End Guide, Revised Second Edition, is an all-inclusive guide on how to implement and analyze the Study Data Tabulation Model (SDTM) and the Analysis Data Model (ADaM) data and prepare clinical trial data for regulatory submission. Updated to reflect the 2017 FDA mandate for adherence to CDISC standards, this new edition covers creating and using metadata, developing conversion specifications, implementing and validating SDTM and ADaM data, determining solutions for legacy data conversions, and preparing data for regulatory submission. The book covers products such as Base SAS, SAS Clinical Data Integration, and the SAS Clinical Standards Toolkit, as well as JMP Clinical. Topics included in this edition include an implementation of the Define-XML 2.0 standard, new SDTM domains, validation with Pinnacle 21 software, event narratives in JMP Clinical, STDM and ADAM metadata spreadsheets, and of course new versions of SAS and JMP software. The second edition was revised to add the latest C-Codes from the most recent release as well as update the make_define macro that accompanies this book in order to add the capability to handle C-Codes. The metadata spreadsheets were updated accordingly. Any manager or user of clinical trial data in this day and age is likely to benefit from knowing how to either put data into a CDISC standard or analyzing and finding data once it is in a CDISC format. If you are one such person--a data manager, clinical and/or statistical programmer, biostatistician, or even a clinician--then this book is for you.

Book Pharmaceutical Quality by Design Using JMP  Solving Product Development and Manufacturing Problems

Download or read book Pharmaceutical Quality by Design Using JMP Solving Product Development and Manufacturing Problems written by Rob Lievense and published by SAS Institute. This book was released on 2018-09 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solve your pharmaceutical product development and manufacturing problems using JMP. Pharmaceutical Quality by Design Using JMP: Solving Product Development and Manufacturing Problems provides broad-based techniques available in JMP to visualize data and run statistical analyses for areas common in healthcare product manufacturing. As international regulatory agencies push the concept of Quality by Design (QbD), there is a growing emphasis to optimize the processing of products. This book uses practical examples from the pharmaceutical and medical device industries to illustrate easy-to-understand ways of incorporating QbD elements using JMP. Pharmaceutical Quality by Design Using JMP opens by demonstrating the easy navigation of JMP to visualize data through the distribution function and the graph builder and then highlights the following: the powerful dynamic nature of data visualization that enables users to be able to quickly extract meaningful information tools and techniques designed for the use of structured, multivariate sets of experiments examples of complex analysis unique to healthcare products such as particle size distributions/drug dissolution, stability of drug products over time, and blend uniformity/content uniformity. Scientists, engineers, and technicians involved throughout the pharmaceutical and medical device product life cycles will find this book invaluable.

Book SAS for Forecasting Time Series  Third Edition

Download or read book SAS for Forecasting Time Series Third Edition written by John C. Brocklebank, Ph.D. and published by SAS Institute. This book was released on 2018-03-14 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: To use statistical methods and SAS applications to forecast the future values of data taken over time, you need only follow this thoroughly updated classic on the subject. With this third edition of SAS for Forecasting Time Series, intermediate-to-advanced SAS users—such as statisticians, economists, and data scientists—can now match the most sophisticated forecasting methods to the most current SAS applications. Starting with fundamentals, this new edition presents methods for modeling both univariate and multivariate data taken over time. From the well-known ARIMA models to unobserved components, methods that span the range from simple to complex are discussed and illustrated. Many of the newer methods are variations on the basic ARIMA structures. Completely updated, this new edition includes fresh, interesting business situations and data sets, and new sections on these up-to-date statistical methods: ARIMA models Vector autoregressive models Exponential smoothing models Unobserved component and state-space models Seasonal adjustment Spectral analysis Focusing on application, this guide teaches a wide range of forecasting techniques by example. The examples provide the statistical underpinnings necessary to put the methods into practice. The following up-to-date SAS applications are covered in this edition: The ARIMA procedure The AUTOREG procedure The VARMAX procedure The ESM procedure The UCM and SSM procedures The X13 procedure The SPECTRA procedure SAS Forecast Studio Each SAS application is presented with explanation of its strengths, weaknesses, and best uses. Even users of automated forecasting systems will benefit from this knowledge of what is done and why. Moreover, the accompanying examples can serve as templates that you easily adjust to fit your specific forecasting needs. This book is part of the SAS Press program.

Book Fundamentals of Biostatistics

Download or read book Fundamentals of Biostatistics written by Bernard Rosner and published by Cengage Learning. This book was released on 2015-07-29 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bernard Rosner's FUNDAMENTALS OF BIOSTATISTICS is a practical introduction to the methods, techniques, and computation of statistics with human subjects. It prepares students for their future courses and careers by introducing the statistical methods most often used in medical literature. Rosner minimizes the amount of mathematical formulation (algebra-based) while still giving complete explanations of all the important concepts. As in previous editions, a major strength of this book is that every new concept is developed systematically through completely worked out examples from current medical research problems. Most methods are illustrated with specific instructions as to implementation using software either from SAS, Stata, R, Excel or Minitab. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Book Analysis of Clinical Trials Using SAS

Download or read book Analysis of Clinical Trials Using SAS written by Alex Dmitrienko and published by SAS Institute. This book was released on 2017-07-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis of Clinical Trials Using SAS®: A Practical Guide, Second Edition bridges the gap between modern statistical methodology and real-world clinical trial applications. Tutorial material and step-by-step instructions illustrated with examples from actual trials serve to define relevant statistical approaches, describe their clinical trial applications, and implement the approaches rapidly and efficiently using the power of SAS. Topics reflect the International Conference on Harmonization (ICH) guidelines for the pharmaceutical industry and address important statistical problems encountered in clinical trials. Commonly used methods are covered, including dose-escalation and dose-finding methods that are applied in Phase I and Phase II clinical trials, as well as important trial designs and analysis strategies that are employed in Phase II and Phase III clinical trials, such as multiplicity adjustment, data monitoring, and methods for handling incomplete data. This book also features recommendations from clinical trial experts and a discussion of relevant regulatory guidelines. This new edition includes more examples and case studies, new approaches for addressing statistical problems, and the following new technological updates: SAS procedures used in group sequential trials (PROC SEQDESIGN and PROC SEQTEST) SAS procedures used in repeated measures analysis (PROC GLIMMIX and PROC GEE) macros for implementing a broad range of randomization-based methods in clinical trials, performing complex multiplicity adjustments, and investigating the design and analysis of early phase trials (Phase I dose-escalation trials and Phase II dose-finding trials) Clinical statisticians, research scientists, and graduate students in biostatistics will greatly benefit from the decades of clinical research experience and the ready-to-use SAS macros compiled in this book.

Book Statistics in the Health Sciences

Download or read book Statistics in the Health Sciences written by Albert Vexler and published by CRC Press. This book was released on 2018-01-19 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This very informative book introduces classical and novel statistical methods that can be used by theoretical and applied biostatisticians to develop efficient solutions for real-world problems encountered in clinical trials and epidemiological studies. The authors provide a detailed discussion of methodological and applied issues in parametric, semi-parametric and nonparametric approaches, including computationally extensive data-driven techniques, such as empirical likelihood, sequential procedures, and bootstrap methods. Many of these techniques are implemented using popular software such as R and SAS."— Vlad Dragalin, Professor, Johnson and Johnson, Spring House, PA "It is always a pleasure to come across a new book that covers nearly all facets of a branch of science one thought was so broad, so diverse, and so dynamic that no single book could possibly hope to capture all of the fundamentals as well as directions of the field. The topics within the book’s purview—fundamentals of measure-theoretic probability; parametric and non-parametric statistical inference; central limit theorems; basics of martingale theory; Monte Carlo methods; sequential analysis; sequential change-point detection—are all covered with inspiring clarity and precision. The authors are also very thorough and avail themselves of the most recent scholarship. They provide a detailed account of the state of the art, and bring together results that were previously scattered across disparate disciplines. This makes the book more than just a textbook: it is a panoramic companion to the field of Biostatistics. The book is self-contained, and the concise but careful exposition of material makes it accessible to a wide audience. This is appealing to graduate students interested in getting into the field, and also to professors looking to design a course on the subject." — Aleksey S. Polunchenko, Department of Mathematical Sciences, State University of New York at Binghamton This book should be appropriate for use both as a text and as a reference. This book delivers a "ready-to-go" well-structured product to be employed in developing advanced courses. In this book the readers can find classical and new theoretical methods, open problems and new procedures. The book presents biostatistical results that are novel to the current set of books on the market and results that are even new with respect to the modern scientific literature. Several of these results can be found only in this book.

Book Statistics and Probability with Applications for Engineers and Scientists

Download or read book Statistics and Probability with Applications for Engineers and Scientists written by Bhisham C. Gupta and published by John Wiley & Sons. This book was released on 2013-04-29 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences.

Book Biostatistics

    Book Details:
  • Author : Wayne W. Daniel
  • Publisher : Wiley
  • Release : 2018-11-13
  • ISBN : 1119282373
  • Pages : 720 pages

Download or read book Biostatistics written by Wayne W. Daniel and published by Wiley. This book was released on 2018-11-13 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to analyze and interpret enormous amounts of data has become a prerequisite for success in allied healthcare and the health sciences. Now in its 11th edition, Biostatistics: A Foundation for Analysis in the Health Sciences continues to offer in-depth guidance toward biostatistical concepts, techniques, and practical applications in the modern healthcare setting. Comprehensive in scope yet detailed in coverage, this text helps students understand—and appropriately use—probability distributions, sampling distributions, estimation, hypothesis testing, variance analysis, regression, correlation analysis, and other statistical tools fundamental to the science and practice of medicine. Clearly-defined pedagogical tools help students stay up-to-date on new material, and an emphasis on statistical software allows faster, more accurate calculation while putting the focus on the underlying concepts rather than the math. Students develop highly relevant skills in inferential and differential statistical techniques, equipping them with the ability to organize, summarize, and interpret large bodies of data. Suitable for both graduate and advanced undergraduate coursework, this text retains the rigor required for use as a professional reference.

Book Introduction to Statistics in Pharmaceutical Clinical Trials

Download or read book Introduction to Statistics in Pharmaceutical Clinical Trials written by Todd A. Durham and published by . This book was released on 2008-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: All students of pharmaceutical sciences and clinical research need a solid knowledge and understanding of the nature, methods, application, and importance of statistics. Introduction to Statistics in Pharmaceutical Clinical Trials is an ideal introduction to statistics presented in the context of clinical trials conducted during pharmaceutical drug development. This novel approach both teaches the computational steps needed to conduct analyses and provides a conceptual understanding of how these analyses provide information that forms the rational basis for decision making throughout the drug development process.