EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Bioinspired Devices

Download or read book Bioinspired Devices written by Eugene C. Goldfield and published by Harvard University Press. This book was released on 2018-01-08 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robotic exoskeletons that allow stroke survivors to regain use of their limbs, 3D-printed replacement body parts, and dozens of other innovations still in schematic design are revolutionizing the treatment of debilitating injuries and nervous system disorders. What all these technologies have in common is that they are modeled after engineering strategies found in nature—strategies developed by a vast array of organisms over eons of evolutionary trial and error. Eugene Goldfield lays out many principles of engineering found in the natural world, with a focus on how evolutionary and developmental adaptations, such as sensory organs and spinal cords, function within complex organisms. He shows how the component parts of highly coordinated structures organize themselves into autonomous functional systems. For example, when people walk, spinal cord neurons generate coordinated signals that continuously reorganize patterns of muscle activations during the gait cycle. This self-organizing capacity is just one of many qualities that allow biological systems to be robust, adaptive, anticipatory, and self-repairing. To exploit the full potential of technologies designed to interact seamlessly with human bodies, properties like these must be better understood and harnessed at every level, from molecules to cells to organ systems. Bioinspired Devices brings together insights from a wide range of fields. A member of the Wyss Institute for Biologically Inspired Engineering, Goldfield offers an insider’s view of cutting-edge research, and envisions a future in which synthetic and biological devices share energy sources and control, blurring the boundary between nature and medicine.

Book Bioinspired Structures and Design

Download or read book Bioinspired Structures and Design written by Wole Soboyejo and published by Cambridge University Press. This book was released on 2020-09-17 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.

Book Bioinspired Materials for Medical Applications

Download or read book Bioinspired Materials for Medical Applications written by Lígia Rodrigues and published by Woodhead Publishing. This book was released on 2016-09-24 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioinspired Materials for Medical Applications examines the inspiration of natural materials and their interpretation as modern biomaterials. With a strong focus on therapeutic and diagnostic applications, the book also examines the development and manipulation of bioinspired materials in regenerative medicine. The first set of chapters is heavily focused on bioinspired solutions for the delivery of drugs and therapeutics that also offer information on the fundamentals of these materials. Chapters in part two concentrate on bioinspired materials for diagnosis applications with a wide coverage of sensor and imaging systems With a broad coverage of the applications of bioinspired biomaterials, this book is a valuable resource for biomaterials researchers, clinicians, and scientists in academia and industry, and all those who wish to broaden their knowledge in the allied field. - Explores how materials designed and produced with inspiration from nature can be used to enhance man-made biomaterials and medical devices - Brings together the two fields of biomaterials and bioinspired materials - Written by a world-class team of research scientists, engineers, and clinicians

Book NanoBioTechnology

    Book Details:
  • Author : Oded Shoseyov
  • Publisher : Springer Science & Business Media
  • Release : 2008-02-07
  • ISBN : 1597452181
  • Pages : 478 pages

Download or read book NanoBioTechnology written by Oded Shoseyov and published by Springer Science & Business Media. This book was released on 2008-02-07 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: NanoBiotechnology is a groundbreaking text investigating the recent advances and future direction of nanobiotechnology. It will assist scientists and students in learning the fundamentals and cutting-edge nature of this new and emerging science. Focusing on materials and building blocks for nanotechnology, leading scientists from around the world share their knowledge and expertise in this authoritative volume.

Book Bioinspired Devices

Download or read book Bioinspired Devices written by Eugene Curtis Goldfield and published by . This book was released on 2018 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: A goal of clinicians is to restore the body and brain function of an individual who has suffered injury and loses capabilities such as walking, using the hands, speaking, remembering, and planning ahead. There is great optimism within the clinical community that we may be able to use scientific principles and new technologies to restore lost function in these individuals. A goal of this book is to integrate advances in neuroscience, integrative biology, biomechanics, developmental science, computer science, and engineering to bring us closer to the vision of devices that harness neuroplasticity for restoring lost function. The book presents a bio-inspired approach to developing such devices. A bio-inspired device is a system whose design and manufacture are based upon the principles by which living systems build. The sources of inspiration for this new generation of devices include how cells form functional systems and organs, how systems maintain stability despite a constant turnover of materials, how system components may participate in different functions, and how biological systems evolve, develop, and learn.--

Book Natural Photonics and Bioinspiration

Download or read book Natural Photonics and Bioinspiration written by Olivier Deparis and published by Artech House. This book was released on 2021-09-30 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonic structures occurring in biological tissues such as butterfly wings, beetle elytra or fish scales are responsible for a broad range of optical effects including iridescence, narrow-band reflection, large solid-angle scattering, polarization effects, additive color mixing, fluid-induced color changes, controlled fluorescence. Studies have provided understanding of the underlying optical mechanisms and the biological functions as well as inspiration for the design and development of novel photonic devices, also called bioinspiration. In this forward-thinking book, the research related to photonic structures in natural organisms is reviewed with a main foPhotonic structures occurring in biological tissues such as butterfly wings, beetle elytra, or fish scales are responsible for a broad range of optical effects including iridescence, narrow band reflection, large solid-angle scattering, polarization, additive color mixing, fluid induced color changes, and controlled fluorescence. This book reviews research of biological photonic devices in accordance with the fundamental aspects of physical optics and environmental biology. It provides readers with an understanding of numerical modelling based on morphological and optical characterizations as well as the quantitative treatment of color vision. This forward-thinking book ties these concepts to the design and synthesis of bioinspired photonic devices and opens the door to the applications of nature’s lessons in the technical world. This resource introduces a methodology for working with and utilizing bioinspiration. It includes the experimental and numerical tools necessary for the characterization and simulation of photonic structures and uses original concepts as examples, with a focus on bioinspired hygrochromatic materials. Professionals are brought up to speed on a variety of fabrication techniques and methods of synthesis all following a straightforward bottom-up or top-down approach. The reader will gain an understanding of the capability of bioinspiration to meet human needs. This book’s explanation of how natural photonics structures behave as efficient solar absorbers or thermal management devices makes it a useful resource for technical professionals in the field of energy and environment, and the concepts presented in this book also have applications in the designs of optical coatings, sensors, and light sources.

Book Bioinspired Legged Locomotion

Download or read book Bioinspired Legged Locomotion written by Maziar Ahmad Sharbafi and published by Butterworth-Heinemann. This book was released on 2017-11-21 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. - Presents state-of-the-art control approaches with biological relevance - Provides a thorough understanding of the principles of organization of biological locomotion - Teaches the organization of complex systems based on low-dimensional motion concepts/control - Acts as a guideline reference for future robots/assistive devices with legged architecture - Includes a selective bibliography on the most relevant published articles

Book Advances in Biologically Inspired Information Systems

Download or read book Advances in Biologically Inspired Information Systems written by Falko Dressler and published by Springer. This book was released on 2007-07-03 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technology is taking us to a world where myriads of networked devices interact with the physical world in multiple ways and at multiple scales. This book presents a comprehensive overview of the most promising research directions in the area of bio-inspired computing. According to the broad spectrum addressed by the different chapters, a rich variety of biological principles and their application to ICT systems are presented.

Book Bio inspired Materials and Sensing Systems

Download or read book Bio inspired Materials and Sensing Systems written by Peter Biggins and published by Royal Society of Chemistry. This book was released on 2011 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title explores the potential of bio-inspired materials and sensing systems by describing a conceptual model of distributed intelligent autonomous sensing.

Book Bio Inspired Algorithms and Devices for Treatment of Cognitive Diseases Using Future Technologies

Download or read book Bio Inspired Algorithms and Devices for Treatment of Cognitive Diseases Using Future Technologies written by Gupta, Shweta and published by IGI Global. This book was released on 2022-02-11 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: As there are no proper medical tests available to predict certain diseases such as Alzheimer’s and Parkinson’s at an early stage, there is a need to further study and consider the potential uses of bio- and nature-inspired algorithms and future technologies such as machine learning in correlation to disease detection and treatment. Bio-Inspired Algorithms and Devices for Treatment of Cognitive Diseases Using Future Technologies considers new tools for early detection of cognitive brain diseases using devices and algorithms whose basic concept is taken from nature and discusses design, analysis, and application of various bionics or bio-inspired algorithms. Covering topics such as depression and cognitive science, this publication is an ideal resource for researchers, academicians, industry professionals, psychologists, psychiatrists, nurses, engineers, instructors, and students.

Book Biological and Bioinspired Materials and Devices

Download or read book Biological and Bioinspired Materials and Devices written by Materials Research Society. Meeting and published by . This book was released on 2004 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: The special interest afforded biological and bioinspired materials and devices lies in the fact that many biological materials, as diverse as bone and teeth and spider silk, have highly refined and sophisticated platforms of structure that are well organized at hierarchical levels spanning nanoscale to microscale measures. There is absolutely strict and precise control of materials synthesis exerted by these natural systems, and vigorous study and advancement in the fields of biomineralization, molecular biology, and DNA technology, for instance, have brought increasing understanding of such control in ever expanding fashion. This knowledge has been quickly transferred into the design and development of synthetic materials that mimic their biological counterparts. In this context, an explosion in research in the past few years has centered on the identification and synthesis of 1) unique ceramics or composites for biomaterials, magnetic and optical use, 2) self-assembled biopolymeric systems for biomaterials and biosensor application, and 3) colloidal and amphiphilic systems for relevance in biomedicine, nanotechnology, and biosensor fabrication. Therefore, new nanocrystalline composites, nanofibers, biosteel fibers, novel biosensors, distinctive drug-delivery systems, exceptional tissue engineering scaffolds, exclusive molecular imprinting matrices, and innovative photonic crystals are suddenly available. Given this backdrop, the papers in this volume involve biology, medicine, engineering, physics, chemistry, and materials science. Topics include biomineralization and the structure and mechanical, magnetic, and optical properties of biominerals; implant materials for dental, maxillofacial, orthopaedic, urological, and ophthalmic applications; tissue adhesives and cements; material degradation and implant failure; organic modification of surfaces and their biocompatibility; tissue engineering with cells and scaffolding to generate extracellular matrices for tissue regeneration; emerging technologies in tissue engineering, including application of stem cells and gene therapy; in situ and ex situ characterization techniques and imaging of biomaterials; pharmaceutical crystallization and materials for drug and gene delivery; supramolecular and biological self assembly; and structure and dynamics of organic/inorganic interfaces.

Book Handbook Of Biomimetics And Bioinspiration  Biologically driven Engineering Of Materials  Processes  Devices  And Systems  In 3 Volumes

Download or read book Handbook Of Biomimetics And Bioinspiration Biologically driven Engineering Of Materials Processes Devices And Systems In 3 Volumes written by Esmaiel Jabbari and published by World Scientific. This book was released on 2014-04-29 with total page 1462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global warming, pollution, food and water shortage, cyberspace insecurity, over-population, land erosion, and an overburdened health care system are major issues facing the human race and our planet. These challenges have presented a mandate to develop “natural” or “green” technologies using nature and the living system as a guide to rationally design processes, devices, and systems. This approach has given rise to a new paradigm, one in which innovation goes hand-in-hand with less waste, less pollution, and less invasiveness to life on earth. Bioinspiration has also led to the development of technologies that mimic the hierarchical complexity of biological systems, leading to novel highly efficient, more reliable multifunctional materials, devices, and systems that can perform multiple tasks at one time. This multi-volume handbook focuses on the application of biomimetics and bioinspiration in medicine and engineering to produce miniaturized multi-functional materials, devices, and systems to perform complex tasks. Our understanding of complex biological systems at different length scales has increased dramatically as our ability to observe nature has expanded from macro to molecular scale, leading to the rational biologically-driven design to find solution to technological problems in medicine and engineering.The following three-volume set covers the fields of bioinspired materials, electromechanical systems developed from concepts inspired by nature, and tissue models respectively.The first volume focuses on the rational design of nano- and micro-structured hierarchical materials inspired by the relevant characteristics in living systems, such as the self-cleaning ability of lotus leaves and cicadas' wings; the superior walking ability of water striders; the anti-fogging function of mosquitoes' eyes; the water-collecting ability of Namib Desert Beetles and spider silk; the high adhesivity of geckos' feet and rose petals; the high adhesivity of mussels in wet aquatic environments; the anisotropic wetting of butterflies' wings; the anti-reflection capabilities of cicadas' wings; the self-cleaning functionality of fish scales; shape anisotropy of intracellular particles; the dielectric properties of muscles; the light spectral characteristics of plant leaves; the regeneration and self-healing ability of earthworms; the self-repairing ability of lotus leaves; the broadband reflectivity of moths' eyes; the multivalent binding, self-assembly and responsiveness of cellular systems; the biomineral formation in bacteria, plants, invertebrates, and vertebrates; the multi-layer structure of skin; the organization of tissue fibers; DNA structures with metal-mediated artificial base pairs; and the anisotropic microstructure of jellyfish mesogloea. In this volume, sensor and microfluidic technologies combined with surface patterning are explored for the diagnosis and monitoring of diseases. The high throughput combinatorial testing of biomaterials in regenerative medicine is also covered.The second volume presents nature-oriented studies and developments in the field of electromechanical devices and systems. These include actuators and robots based on the movement of muscles, algal antenna and photoreception; the non-imaging light sensing system of sea stars; the optical system of insect ocellus; smart nanochannels and pumps in cell membranes; neuromuscular and sensory devices that mimic the architecture of peripheral nervous system; olfaction-based odor sensing; cilia-mimetic microfluidic systems; the infrared sensory system of pyrophilous insects; ecologically inspired multizone temperature control systems; cochlea and surface acoustic wave resonators; crickets' cercal system and flow sensing abilities; locusts' wings and flapping micro air vehicles; the visual motion sensing of flying insects; hearing aid devices based on the human cochlea; the geometric perception of tortoises and pigeons; the organic matter sensing capability of cats and dogs; and the silent flight of rats. The third volume features engineered models of biological tissues. These include engineered matrices to mimic cancer stem cell niches; in vitro models for bone regeneration; models of muscle tissue that enable the study of cardiac infarction and myopathy; 3D models for the differentiation of embryonic stem cells; bioreactors for in vitro cultivation of mammalian cells; human lung, liver and heart tissue models; topographically-defined cell culture models; ECM mimetic tissue printing; biomimetic constructs for regeneration of soft tissues; and engineered constructs for the regeneration of musculoskeletal and corneal tissue.This three-volume set is a must-have for anyone keen to understand the complexity of biological systems and how that complexity can be mimicked to engineer novel materials, devices and systems to solve pressing technological challenges of the twenty-first century.Key Features:The only handbook that covers all aspects of biomimetics and bioinspiration, including materials, mechanics, signaling and informaticsContains 248 colored figures

Book Bio Inspired Systems  Computational and Ambient Intelligence

Download or read book Bio Inspired Systems Computational and Ambient Intelligence written by Joan Cabestany and published by Springer. This book was released on 2009-06-05 with total page 1403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the set of final accepted papers for the tenth edition of the IWANN conference “International Work-Conference on Artificial neural Networks” held in Salamanca (Spain) during June 10–12, 2009. IWANN is a biennial conference focusing on the foundations, theory, models and applications of systems inspired by nature (mainly, neural networks, evolutionary and soft-computing systems). Since the first edition in Granada (LNCS 540, 1991), the conference has evolved and matured. The list of topics in the successive Call for - pers has also evolved, resulting in the following list for the present edition: 1. Mathematical and theoretical methods in computational intelligence. C- plex and social systems. Evolutionary and genetic algorithms. Fuzzy logic. Mathematics for neural networks. RBF structures. Self-organizing networks and methods. Support vector machines. 2. Neurocomputational formulations. Single-neuron modelling. Perceptual m- elling. System-level neural modelling. Spiking neurons. Models of biological learning. 3. Learning and adaptation. Adaptive systems. Imitation learning. Reconfig- able systems. Supervised, non-supervised, reinforcement and statistical al- rithms. 4. Emulation of cognitive functions. Decision making. Multi-agent systems. S- sor mesh. Natural language. Pattern recognition. Perceptual and motor functions (visual, auditory, tactile, virtual reality, etc.). Robotics. Planning motor control. 5. Bio-inspired systems and neuro-engineering. Embedded intelligent systems. Evolvable computing. Evolving hardware. Microelectronics for neural, fuzzy and bio-inspired systems. Neural prostheses. Retinomorphic systems. Bra- computer interfaces (BCI). Nanosystems. Nanocognitive systems.

Book Biologically Inspired Computer Vision

Download or read book Biologically Inspired Computer Vision written by Gabriel Cristobal and published by John Wiley & Sons. This book was released on 2015-11-16 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the state-of-the-art imaging technologies became more and more advanced, yielding scientific data at unprecedented detail and volume, the need to process and interpret all the data has made image processing and computer vision increasingly important. Sources of data that have to be routinely dealt with today's applications include video transmission, wireless communication, automatic fingerprint processing, massive databanks, non-weary and accurate automatic airport screening, robust night vision, just to name a few. Multidisciplinary inputs from other disciplines such as physics, computational neuroscience, cognitive science, mathematics, and biology will have a fundamental impact in the progress of imaging and vision sciences. One of the advantages of the study of biological organisms is to devise very different type of computational paradigms by implementing a neural network with a high degree of local connectivity. This is a comprehensive and rigorous reference in the area of biologically motivated vision sensors. The study of biologically visual systems can be considered as a two way avenue. On the one hand, biological organisms can provide a source of inspiration for new computational efficient and robust vision models and on the other hand machine vision approaches can provide new insights for understanding biological visual systems. Along the different chapters, this book covers a wide range of topics from fundamental to more specialized topics, including visual analysis based on a computational level, hardware implementation, and the design of new more advanced vision sensors. The last two sections of the book provide an overview of a few representative applications and current state of the art of the research in this area. This makes it a valuable book for graduate, Master, PhD students and also researchers in the field.

Book Emerging Technologies and Systems for Biologically Plausible Implementations of Neural Functions

Download or read book Emerging Technologies and Systems for Biologically Plausible Implementations of Neural Functions written by Erika Covi and published by Frontiers Media SA. This book was released on 2022-04-26 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bionanoelectronics

    Book Details:
  • Author : Daniela Dragoman
  • Publisher : Springer Science & Business Media
  • Release : 2012-03-22
  • ISBN : 3642255728
  • Pages : 261 pages

Download or read book Bionanoelectronics written by Daniela Dragoman and published by Springer Science & Business Media. This book was released on 2012-03-22 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the achievements in bionanoelectronics in a coherent manner. It deals with nanodevices applied to biostructures, molecular motors, molecular pumps, molecular nanoactuators and electronic biodevices, including nanodevices for sensing and imaging biomolcules. The book describes bionanoelectronics, detection of biomolecules and targets various biological applications such as detection and sequencing of DNA and early detection of various deseases and nanomedicine. Further important topics of the book are biomimetics and bioinspired electronics.The book also deals with biomolecules as building blocks of nanodevices for nanoelectronics or future computing architecture The application of scanning probe techniques to biological samples is described.

Book Materials Research to Meet 21st Century Defense Needs

Download or read book Materials Research to Meet 21st Century Defense Needs written by National Research Council and published by National Academies Press. This book was released on 2003-03-25 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to achieve the revolutionary new defense capabilities offered by materials science and engineering, innovative management to reduce the risks associated with translating research results will be needed along with the R&D. While payoff is expected to be high from the promising areas of materials research, many of the benefits are likely to be evolutionary. Nevertheless, failure to invest in more speculative areas of research could lead to undesired technological surprises. Basic research in physics, chemistry, biology, and materials science will provide the seeds for potentially revolutionary technologies later in the 21st century.