EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Artificial Intelligence

    Book Details:
  • Author : Marco Antonio Aceves-Fernandez
  • Publisher : BoD – Books on Demand
  • Release : 2018-06-27
  • ISBN : 178923364X
  • Pages : 466 pages

Download or read book Artificial Intelligence written by Marco Antonio Aceves-Fernandez and published by BoD – Books on Demand. This book was released on 2018-06-27 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence (AI) is taking an increasingly important role in our society. From cars, smartphones, airplanes, consumer applications, and even medical equipment, the impact of AI is changing the world around us. The ability of machines to demonstrate advanced cognitive skills in taking decisions, learn and perceive the environment, predict certain behavior, and process written or spoken languages, among other skills, makes this discipline of paramount importance in today's world. Although AI is changing the world for the better in many applications, it also comes with its challenges. This book encompasses many applications as well as new techniques, challenges, and opportunities in this fascinating area.

Book Biomedical Natural Language Processing

Download or read book Biomedical Natural Language Processing written by Kevin Bretonnel Cohen and published by John Benjamins Publishing Company. This book was released on 2014-02-15 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical Natural Language Processing is a comprehensive tour through the classic and current work in the field. It discusses all subjects from both a rule-based and a machine learning approach, and also describes each subject from the perspective of both biological science and clinical medicine. The intended audience is readers who already have a background in natural language processing, but a clear introduction makes it accessible to readers from the fields of bioinformatics and computational biology, as well. The book is suitable as a reference, as well as a text for advanced courses in biomedical natural language processing and text mining.

Book Analysis of Biological Networks

Download or read book Analysis of Biological Networks written by Björn H. Junker and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to biological networks and methods for their analysis Analysis of Biological Networks is the first book of its kind to provide readers with a comprehensive introduction to the structural analysis of biological networks at the interface of biology and computer science. The book begins with a brief overview of biological networks and graph theory/graph algorithms and goes on to explore: global network properties, network centralities, network motifs, network clustering, Petri nets, signal transduction and gene regulation networks, protein interaction networks, metabolic networks, phylogenetic networks, ecological networks, and correlation networks. Analysis of Biological Networks is a self-contained introduction to this important research topic, assumes no expert knowledge in computer science or biology, and is accessible to professionals and students alike. Each chapter concludes with a summary of main points and with exercises for readers to test their understanding of the material presented. Additionally, an FTP site with links to author-provided data for the book is available for deeper study. This book is suitable as a resource for researchers in computer science, biology, bioinformatics, advanced biochemistry, and the life sciences, and also serves as an ideal reference text for graduate-level courses in bioinformatics and biological research.

Book Machine Learning in Bio Signal Analysis and Diagnostic Imaging

Download or read book Machine Learning in Bio Signal Analysis and Diagnostic Imaging written by Nilanjan Dey and published by Academic Press. This book was released on 2018-11-30 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains

Book Text Mining for Biology and Biomedicine

Download or read book Text Mining for Biology and Biomedicine written by Sophia Ananiadou and published by Artech House Publishers. This book was released on 2006 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here's the first focused book that puts the full range of cutting-edge biological text mining techniques and tools at your command. This comprehensive volume describes the methods of natural language processing (NLP) and their applications in the biological domain, and spells out in detail the various lexical, terminological, and ontological resources now at your disposal - and how best to utilize them.

Book Mining Text Data

    Book Details:
  • Author : Charu C. Aggarwal
  • Publisher : Springer Science & Business Media
  • Release : 2012-02-03
  • ISBN : 1461432235
  • Pages : 527 pages

Download or read book Mining Text Data written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2012-02-03 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.

Book Biological Distance Analysis

    Book Details:
  • Author : Marin A. Pilloud
  • Publisher : Academic Press
  • Release : 2016-07-08
  • ISBN : 0128019719
  • Pages : 520 pages

Download or read book Biological Distance Analysis written by Marin A. Pilloud and published by Academic Press. This book was released on 2016-07-08 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biological Distance Analysis: Forensic and Bioarchaeological Perspectives synthesizes research within the realm of biological distance analysis, highlighting current work within the field and discussing future directions. The book is divided into three main sections. The first section clearly outlines datasets and methods within biological distance analysis, beginning with a brief history of the field and how it has progressed to its current state. The second section focuses on approaches using the individual within a forensic context, including ancestry estimation and case studies. The final section concentrates on population-based bioarchaeological approaches, providing key techniques and examples from archaeological samples. The volume also includes an appendix with additional resources available to those interested in biological distance analyses. - Defines datasets and how they are used within biodistance analysis - Applies methodology to individual and population studies - Bridges the sub-fields of forensic anthropology and bioarchaeology - Highlights current research and future directions of biological distance analysis - Identifies statistical programs and datasets for use in biodistance analysis - Contains cases studies and thorough index for those interested in biological distance analyses

Book Data Analytics in Bioinformatics

Download or read book Data Analytics in Bioinformatics written by Rabinarayan Satpathy and published by John Wiley & Sons. This book was released on 2021-01-20 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.

Book The Analysis of Biological Data

Download or read book The Analysis of Biological Data written by Michael C. Whitlock and published by Macmillan Higher Education. This book was released on 2019-11-22 with total page 2074 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Analysis of Biological Data provides students with a practical foundation of statistics for biology students. Every chapter has several biological or medical examples of key concepts, and each example is prefaced by a substantial description of the biological setting. The emphasis on real and interesting examples carries into the problem sets where students have dozens of practice problems based on real data. The third edition features over 200 new examples and problems. These include new calculation practice problems, which guide the student step by step through the methods, and a greater number of examples and topics come from medical and human health research. Every chapter has been carefully edited for even greater clarity and ease of use. All the data sets, R scripts for all worked examples in the book, as well as many other teaching resources, are available to qualified instructors (see below).

Book Machine Learning for Text

Download or read book Machine Learning for Text written by Charu C. Aggarwal and published by Springer. This book was released on 2018-03-19 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text analytics is a field that lies on the interface of information retrieval,machine learning, and natural language processing, and this textbook carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this textbook is organized into three categories: - Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for machine learning from text such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis. - Domain-sensitive mining: Chapters 8 and 9 discuss the learning methods from text when combined with different domains such as multimedia and the Web. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. - Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection. This textbook covers machine learning topics for text in detail. Since the coverage is extensive,multiple courses can be offered from the same book, depending on course level. Even though the presentation is text-centric, Chapters 3 to 7 cover machine learning algorithms that are often used indomains beyond text data. Therefore, the book can be used to offer courses not just in text analytics but also from the broader perspective of machine learning (with text as a backdrop). This textbook targets graduate students in computer science, as well as researchers, professors, and industrial practitioners working in these related fields. This textbook is accompanied with a solution manual for classroom teaching.

Book Biomedical Text Mining

    Book Details:
  • Author : Kalpana Raja
  • Publisher : Springer Nature
  • Release : 2022-06-17
  • ISBN : 1071623052
  • Pages : 324 pages

Download or read book Biomedical Text Mining written by Kalpana Raja and published by Springer Nature. This book was released on 2022-06-17 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume details step-by-step instructions on biomedical literature mining protocols. Chapters guide readers through various topics such as, disease comorbidity, literature-based discovery, protocols to combine literature mining, machine learning for predicting biomedical discoveries, and uncovering unknown public knowledge by combining two pieces of information from different sets of PubMed articles. Additional chapters discuss the importance of data science to understand outbreaks such as COVID-19. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Biomedical Text Mining aims to be a useful practical guide to researches to help further their studies.

Book Biological Sequence Analysis

Download or read book Biological Sequence Analysis written by Richard Durbin and published by Cambridge University Press. This book was released on 1998-04-23 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.

Book Bio Geotechnologies for Mine Site Rehabilitation

Download or read book Bio Geotechnologies for Mine Site Rehabilitation written by M.N.V. Prasad and published by Elsevier. This book was released on 2018-01-02 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bio-Geotechnologies for Mine Site Rehabilitation deals with the biological, physical, chemical, and engineering approaches necessary for the reclamation of mine waste. As mining has negative effects on natural resources and deteriorates the quality of the surrounding environment, this book provides coverage across different types of mining industries, which are currently creating industrial deserts overloaded with technogenic waste. The book offers cost-effective strategies and approaches for contaminated sites, along with remediation and rehabilitation methods for contaminated soils and waste dumps. It is an essential resource for students and academics, but is also ideal for applied professionals in environmental geology, mineral geologists, biotechnologists and policymakers. - Deals with global and holistic approaches of abandoned mine land rehabilitation - Includes mine waste rehabilitation case studies from around the world - Covers integrated technologies, such as bioremediation of metalliferous soil - Provide strategies for sustainable ecosystems on mine spoil dumps - Offers novel methods for the remediation of acid mine drainage

Book Data Analysis in Biochemistry and Biophysics

Download or read book Data Analysis in Biochemistry and Biophysics written by Magar Mager and published by Elsevier. This book was released on 2012-12-02 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analysis in Biochemistry and Biophysics describes the techniques how to derive the most amount of quantitative and statistical information from data gathered in enzyme kinetics, protein-ligand equilibria, optical rotatory dispersion, chemical relaxation methods. This book focuses on the determination and analysis of parameters in different models that are used in biochemistry, biophysics, and molecular biology. The Michaelis-Menten equation can explain the process to obtain the maximum amount of information by determining the parameters of the model. This text also explains the fundamentals present in hypothesis testing, and the equation that represents the statistical aspects of a linear model occurring frequently in this field of testing. This book also analyzes the ultraviolet spectra of nucleic acids, particularly, to establish the composition of melting regions of nucleic acids. The investigator can use the matrix rank analysis to determine the spectra to substantiate systems whose functions are not known. This text also explains flow techniques and relaxation methods associated with rapid reactions to determine transient kinetic parameters. This book is suitable for molecular biologists, biophysicists, physiologists, biochemists, bio- mathematicians, statisticians, computer programmers, and investigators involved in related sciences

Book Text Mining Approaches for Biomedical Data

Download or read book Text Mining Approaches for Biomedical Data written by Aditi Sharan and published by Springer Nature. This book was released on with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Text Analytics with Python

Download or read book Text Analytics with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2016-11-30 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data

Book Theory and Applications for Advanced Text Mining

Download or read book Theory and Applications for Advanced Text Mining written by Shigeaki Sakurai and published by BoD – Books on Demand. This book was released on 2012-11-21 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the growth of computer technologies and web technologies, we can easily collect and store large amounts of text data. We can believe that the data include useful knowledge. Text mining techniques have been studied aggressively in order to extract the knowledge from the data since late 1990s. Even if many important techniques have been developed, the text mining research field continues to expand for the needs arising from various application fields. This book is composed of 9 chapters introducing advanced text mining techniques. They are various techniques from relation extraction to under or less resourced language. I believe that this book will give new knowledge in the text mining field and help many readers open their new research fields.