EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Problems for Biomedical Fluid Mechanics and Transport Phenomena

Download or read book Problems for Biomedical Fluid Mechanics and Transport Phenomena written by Mark Johnson and published by Cambridge University Press. This book was released on 2014 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique resource offers over two hundred well-tested bioengineering problems for teaching and examinations. Solutions are available to instructors online.

Book Transport Phenomena in Biomedical Engineering

Download or read book Transport Phenomena in Biomedical Engineering written by Robert A. Peattie and published by CRC Press. This book was released on 2012-11-20 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, analysis and simulation of tissue constructs is an integral part of the ever-evolving field of biomedical engineering. The study of reaction kinetics, particularly when coupled with complex physical phenomena such as the transport of heat, mass and momentum, is required to determine or predict performance of biologically-based systems wheth

Book Transport Phenomena in Biomedical Engineering  Artifical organ Design and Development  and Tissue Engineering

Download or read book Transport Phenomena in Biomedical Engineering Artifical organ Design and Development and Tissue Engineering written by Kal Renganathan Sharma and published by McGraw Hill Professional. This book was released on 2010-07-21 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Cutting-Edge Guide to Applying Transport Phenomena Principles to Bioengineering Systems Transport Phenomena in Biomedical Engineering: Artificial Order Design and Development and Tissue Engineering explains how to apply the equations of continuity, momentum, energy, and mass to human anatomical systems. This authoritative resource presents solutions along with term-by-term medical significance. Worked exercises illustrate the equations derived, and detailed case studies highlight real-world examples of artificial organ design and human tissue engineering. Coverage includes: Fundamentals of fluid mechanics and principles of molecular diffusion Osmotic pressure, solvent permeability, and solute transport Rheology of blood and transport Gas transport Pharmacokinetics Tissue design Bioartificial organ design and immunoisolation Bioheat transport 541 end-of-chapter exercises and review questions 106 illustrations 1,469 equations derived from first principles

Book Basic Transport Phenomena in Biomedical Engineering Third Edition

Download or read book Basic Transport Phenomena in Biomedical Engineering Third Edition written by Ronald L. Fournier and published by CRC Press. This book was released on 2011-08-26 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Encompassing a variety of engineering disciplines and life sciences, the very scope and breadth of biomedical engineering presents challenges to creating a concise, entry level text that effectively introduces basic concepts without getting overly specialized in subject matter or rarified in language. Basic Transport Phenomena in Biomedical Engineering, Third Edition meets and overcomes these challenges to provide the beginning student with the foundational tools and the confidence they need to apply these techniques to problems of ever greater complexity. Bringing together fundamental engineering and life science principles, this highly accessible text provides a focused coverage of key momentum and mass transport concepts in biomedical engineering. It offers a basic review of units and dimensions, material balances, and problem-solving tips, and then emphasizes those chemical and physical transport processes that have applications in the development of artificial and bioartificial organs, controlled drug delivery systems, and tissue engineering. The book also includes a discussion of thermodynamic concepts and covers topics such as body fluids, osmosis and membrane filtration, physical and flow properties of blood, solute and oxygen transport, and pharmacokinetic analysis. It concludes with the application of these principles to extracorporeal devices as well as tissue engineering and bioartificial organs. Designed for the beginning student, Basic Transport Phenomena in Biomedical Engineering, Third Edition provides a quantitative understanding of the underlying physical, chemical, and biological phenomena involved. It offers mathematical models using the ‘shell balance" or compartmental approaches, along with numerous examples and end-of-chapter problems based on these mathematical models and in many cases these models are compared with actual experimental data. Encouraging students to work examples with the mathematical software package of their choice, this text provides them the opportunity to explore various aspects of the solution on their own, or apply these techniques as starting points for the solution to their own problems.

Book Basic Transport Phenomena in Biomedical Engineering

Download or read book Basic Transport Phenomena in Biomedical Engineering written by Ronald L. Fournier and published by CRC Press. This book was released on 2017-08-07 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This will be a substantial revision of a good selling text for upper division/first graduate courses in biomedical transport phenomena, offered in many departments of biomedical and chemical engineering. Each chapter will be updated accordingly, with new problems and examples incorporated where appropriate. A particular emphasis will be on new information related to tissue engineering and organ regeneration. A key new feature will be the inclusion of complete solutions within the body of the text, rather than in a separate solutions manual. Also, Matlab will be incorporated for the first time with this Fourth Edition.

Book Basic Transport Phenomena in Biomedical Engineering

Download or read book Basic Transport Phenomena in Biomedical Engineering written by Ronald L. Fournier and published by CRC Press. This book was released on 2017-08-07 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: This will be a substantial revision of a good selling text for upper division/first graduate courses in biomedical transport phenomena, offered in many departments of biomedical and chemical engineering. Each chapter will be updated accordingly, with new problems and examples incorporated where appropriate. A particular emphasis will be on new information related to tissue engineering and organ regeneration. A key new feature will be the inclusion of complete solutions within the body of the text, rather than in a separate solutions manual. Also, Matlab will be incorporated for the first time with this Fourth Edition.

Book Transport Phenomena in Biomedical Engineering

Download or read book Transport Phenomena in Biomedical Engineering written by Robert A. Peattie and published by CRC Press. This book was released on 2012-11-20 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, analysis and simulation of tissue constructs is an integral part of the ever-evolving field of biomedical engineering. The study of reaction kinetics, particularly when coupled with complex physical phenomena such as the transport of heat, mass and momentum, is required to determine or predict performance of biologically-based systems whether for research or clinical implementation. Transport Phenomena in Biomedical Engineering: Principles and Practices explores the concepts of transport phenomena alongside chemical reaction kinetics and thermodynamics to introduce the field of reaction engineering as it applies to physiologic systems in health and disease. It emphasizes the role played by these fundamental physical processes. The book first examines elementary concepts such as control volume selection and flow systems. It provides a comprehensive treatment with an overview of major research topics related to transport phenomena pertaining to biomedical engineering. Although each chapter is self-contained, they all bring forth and reinforce similar concepts through applications and discussions. With contributions from world-class experts, the book unmasks the fundamental phenomenological events in engineering devices and explores how to use them to meet the objectives of specific applications. It includes coverage of applications to drug delivery and cell- and tissue-based therapies.

Book Transport Phenomena in Biological Systems

Download or read book Transport Phenomena in Biological Systems written by George A. Truskey and published by Prentice Hall. This book was released on 2009 with total page 889 pages. Available in PDF, EPUB and Kindle. Book excerpt: For one-semester, advanced undergraduate/graduate courses in Biotransport Engineering. Presenting engineering fundamentals and biological applications in a unified way, this text provides students with the skills necessary to develop and critically analyze models of biological transport and reaction processes. It covers topics in fluid mechanics, mass transport, and biochemical interactions, with engineering concepts motivated by specific biological problems.

Book Transport Phenomena in Medicine and Biology

Download or read book Transport Phenomena in Medicine and Biology written by Marshall Min-Shing Lih and published by John Wiley & Sons. This book was released on 1975 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bio medical Transport Phenomena

Download or read book Bio medical Transport Phenomena written by E. N. Lightfoot and published by . This book was released on 1971 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transport Phenomena in the Cardiovascular System

Download or read book Transport Phenomena in the Cardiovascular System written by Stanley Middleman and published by John Wiley & Sons. This book was released on 1972 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transport Phenomena and Living Systems

Download or read book Transport Phenomena and Living Systems written by Edwin N. Lightfoot and published by Wiley-Interscience. This book was released on 1973 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Biomedical Engineering

Download or read book Introduction to Biomedical Engineering written by John Enderle and published by Elsevier. This book was released on 2005-05-20 with total page 1141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering* New chapters on Computational Biology, Medical Imaging, Genomics, and Bioinformatics* Companion site: http://intro-bme-book.bme.uconn.edu/* MATLAB and SIMULINK software used throughout to model and simulate dynamic systems* Numerous self-study homework problems and thorough cross-referencing for easy use

Book Modeling Transport Phenomena in Porous Media with Applications

Download or read book Modeling Transport Phenomena in Porous Media with Applications written by Malay K. Das and published by Springer. This book was released on 2017-11-21 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.

Book Transport Phenomena in Micro Process Engineering

Download or read book Transport Phenomena in Micro Process Engineering written by Norbert Kockmann and published by Springer Science & Business Media. This book was released on 2007-11-12 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the fundamentals of chemical engineering are presented with respect to applications in micro system technology, microfluidics, and transport processes within microstructures. Special features of the book include the state-of-the-art in micro process engineering, a detailed treatment of transport phenomena for engineers, and a design methodology from transport effects to economic considerations.

Book Biotransport  Principles and Applications

Download or read book Biotransport Principles and Applications written by Robert J. Roselli and published by Springer Science & Business Media. This book was released on 2011-06-10 with total page 1293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Biotransport Principles is a concise text covering the fundamentals of biotransport, including biological applications of: fluid, heat, and mass transport.

Book Transport Phenomena Fundamentals

Download or read book Transport Phenomena Fundamentals written by Joel L. Plawsky and published by CRC Press. This book was released on 2020-02-27 with total page 863 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fourth edition of Transport Phenomena Fundamentals continues with its streamlined approach to the subject, based on a unified treatment of heat, mass, and momentum transport using a balance equation approach. The new edition includes more worked examples within each chapter and adds confidence-building problems at the end of each chapter. Some numerical solutions are included in an appendix for students to check their comprehension of key concepts. Additional resources online include exercises that can be practiced using a wide range of software programs available for simulating engineering problems, such as, COMSOL®, Maple®, Fluent, Aspen, Mathematica, Python and MATLAB®, lecture notes, and past exams. This edition incorporates a wider range of problems to expand the utility of the text beyond chemical engineering. The text is divided into two parts, which can be used for teaching a two-term course. Part I covers the balance equation in the context of diffusive transport—momentum, energy, mass, and charge. Each chapter adds a term to the balance equation, highlighting that term's effects on the physical behavior of the system and the underlying mathematical description. Chapters familiarize students with modeling and developing mathematical expressions based on the analysis of a control volume, the derivation of the governing differential equations, and the solution to those equations with appropriate boundary conditions. Part II builds on the diffusive transport balance equation by introducing convective transport terms, focusing on partial, rather than ordinary, differential equations. The text describes paring down the full, microscopic equations governing the phenomena to simplify the models and develop engineering solutions, and it introduces macroscopic versions of the balance equations for use where the microscopic approach is either too difficult to solve or would yield much more information that is actually required. The text discusses the momentum, Bernoulli, energy, and species continuity equations, including a brief description of how these equations are applied to heat exchangers, continuous contactors, and chemical reactors. The book introduces the three fundamental transport coefficients: the friction factor, the heat transfer coefficient, and the mass transfer coefficient in the context of boundary layer theory. Laminar flow situations are treated first followed by a discussion of turbulence. The final chapter covers the basics of radiative heat transfer, including concepts such as blackbodies, graybodies, radiation shields, and enclosures.