Download or read book Bifurcation Symmetry and Patterns written by Jorge Buescu and published by Birkhäuser. This book was released on 2012-12-06 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest developments on both the theory and applications of bifurcations with symmetry. The text includes recent experimental work as well as new approaches to and applications of the theory to other sciences. It shows the range of dissemination of the work of Martin Golubitsky and Ian Stewart and its influence in modern mathematics at the same time as it contains work of young mathematicians in new directions. The range of topics includes mathematical biology, pattern formation, ergodic theory, normal forms, one-dimensional dynamics and symmetric dynamics.
Download or read book The Symmetry Perspective written by Martin Golubitsky and published by Birkhäuser. This book was released on 2012-12-06 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: The framework of ‘symmetry’ provides an important route between the abstract theory and experimental observations. The book applies symmetry methods to dynamical systems, focusing on bifurcation and chaos theory. Its exposition is organized around a wide variety of relevant applications. From the reviews: "[The] rich collection of examples makes the book...extremely useful for motivation and for spreading the ideas to a large Community."--MATHEMATICAL REVIEWS
Download or read book Lectures on Bifurcations Dynamics and Symmetry written by Michael J. Field and published by CRC Press. This book was released on 2020-02-17 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an expanded version of a Master Class on the symmetric bifurcation theory of differential equations given by the author at the University of Twente in 1995. The notes cover a wide range of recent results in the subject, and focus on the dynamics that can appear in the generic bifurcation theory of symmetric differential equations. This text covers a wide range of current results in the subject of bifurcations, dynamics and symmetry. The style and format of the original lectures has largely been maintained and the notes include over 70 exercises.
Download or read book Elements of Applied Bifurcation Theory written by Yuri Kuznetsov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Download or read book Dynamics And Bifurcation Of Patterns In Dissipative Systems written by Iuliana Oprea and published by World Scientific. This book was released on 2004-11-17 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the spontaneous formation and dynamics of spatiotemporal patterns in dissipative nonequilibrium systems is one of the major challenges in nonlinear science. This collection of expository papers and advanced research articles, written by leading experts, provides an overview of the state of the art. The topics include new approaches to the mathematical characterization of spatiotemporal complexity, with special emphasis on the role of symmetry, as well as analysis and experiments of patterns in a remarkable variety of applied fields such as magnetoconvection, liquid crystals, granular media, Faraday waves, multiscale biological patterns, visual hallucinations, and biological pacemakers. The unitary presentations, guiding the reader from basic fundamental concepts to the most recent research results on each of the themes, make the book suitable for a wide audience.
Download or read book Imperfect Bifurcation in Structures and Materials written by Kiyohiro Ikeda and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.
Download or read book Methods In Equivariant Bifurcations And Dynamical Systems written by Pascal Chossat and published by World Scientific Publishing Company. This book was released on 2000-02-28 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book presents a comprehensive introduction to bifurcation theory in the presence of symmetry, an applied mathematical topic which has developed considerably over the past twenty years and has been very successful in analysing and predicting pattern formation and other critical phenomena in most areas of science where nonlinear models are involved, like fluid flow instabilities, chemical waves, elasticity and population dynamics.The book has two aims. One is to expound the mathematical methods of equivariant bifurcation theory. Beyond the classical bifurcation tools, such as center manifold and normal form reductions, the presence of symmetry requires the introduction of the algebraic and geometric formalism of Lie group theory and transformation group methods. For the first time, all these methods in equivariant bifurcations are presented in a coherent and self-consistent way in a book.The other aim is to present the most recent ideas and results in this theory, in relation to applications. This includes bifurcations of relative equilibria and relative periodic orbits for compact and noncompact group actions, heteroclinic cycles and forced symmetry-breaking perturbations. Although not all recent contributions could be included and a choice had to be made, a rather complete description of these new developments is provided. At the end of every chapter, exercises are offered to the reader.
Download or read book Singularities and Groups in Bifurcation Theory written by Martin Golubitsky and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions.
Download or read book Pattern Formation Symmetry Methods and Applications written by John M. Chadam and published by American Mathematical Soc.. This book was released on 1996 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of two related workshops held at The Fields Institute in February and March 1993. The workshops were an integral part of the thematic year in Dynamical Systems and Bifurcation Theory held during the 1992-1993 academic year. This volume covers the full spectrum of research involved in combining symmetry methods with dynamical systems and bifurcation theory, from the development of the mathematical theory in order to understand the underlying mechanisms to the application of this new mathematical theory, to partial differential equation models of realistic ph.
Download or read book Dynamics and Bifurcation in Networks written by Martin Golubitsky and published by SIAM. This book was released on 2023-04-24 with total page 867 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, there has been an explosion of interest in network-based modeling in many branches of science. This book synthesizes some of the common features of many such models, providing a general framework analogous to the modern theory of nonlinear dynamical systems. How networks lead to behavior not typical in a general dynamical system and how the architecture and symmetry of the network influence this behavior are the book’s main themes. Dynamics and Bifurcation in Networks: Theory and Applications of Coupled Differential Equations is the first book to describe the formalism for network dynamics developed over the past 20 years. In it, the authors introduce a definition of a network and the associated class of “admissible” ordinary differential equations, in terms of a directed graph whose nodes represent component dynamical systems and whose arrows represent couplings between these systems. They also develop connections between network architecture and the typical dynamics and bifurcations of these equations and discuss applications of this formalism to various areas of science, including gene regulatory networks, animal locomotion, decision-making, homeostasis, binocular rivalry, and visual illusions. This book will be of interest to scientific researchers in any area that uses network models, which includes many parts of biology, physics, chemistry, computer science, electrical and electronic engineering, psychology, and sociology.
Download or read book Bifurcation Theory for Hexagonal Agglomeration in Economic Geography written by Kiyohiro Ikeda and published by Springer Science & Business Media. This book was released on 2013-11-08 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distributed places, and the symmetry of this lattice is expressed by a finite group. Several mathematical methodologies indispensable for tackling the present problem are gathered in a self-contained manner. The existence of hexagonal distributions is verified by group-theoretic bifurcation analysis, first by applying the so-called equivariant branching lemma and next by solving the bifurcation equation. This book offers a complete guide for the application of group-theoretic bifurcation analysis to economic agglomeration on the hexagonal lattice.
Download or read book Bifurcation and Buckling in Structures written by Kiyohiro Ikeda and published by CRC Press. This book was released on 2021-12-30 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bifurcation and Buckling in Structures describes the theory and analysis of bifurcation and buckling in structures. Emphasis is placed on a general procedure for solving nonlinear governing equations and an analysis procedure related to the finite-element method. Simple structural examples using trusses, columns, and frames illustrate the principles. Part I presents fundamental issues such as the general mathematical framework for bifurcation and buckling, procedures for the buckling load/mode analyses, and numerical analysis procedures to trace the solution curves and switch to bifurcation solutions. Advanced topics include asymptotic theory of bifurcation and bifurcation theory of symmetric systems. Part II deals with buckling of perfect and imperfect structures. An overview of the member buckling of columns and beams is provided, followed by the buckling analysis of truss and frame structures. The worst and random imperfections are studied as advanced topics. An extensive review of the history of buckling is presented. This text is ideal for advanced undergraduate and graduate students in engineering and applied mathematics. To assist readers, problems are listed at the end of each chapter, and their answers are given at the end of the book. Kiyohiro Ikeda is Professor Emeritus at Tohoku University, Japan. Kazuo Murota is a Project Professor at the Institute of Statistical Mathematics, Japan, as well as Professor Emeritus at the University of Tokyo, Kyoto University, and Tokyo Metropolitan University, Japan.
Download or read book Pattern Formation written by Rebecca B. Hoyle and published by Cambridge University Press. This book was released on 2006-03-17 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fully illustrated mathematical guide to pattern formation. Includes instructive exercises and examples.
Download or read book Pattern Formation in Continuous and Coupled Systems written by Martin Golubitsky and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications PATTERN FORMATION IN CONTINUOUS AND COUPLED SYSTEMS is based on the proceedings of a workshop with the same title, but goes be yond the proceedings by presenting a series of mini-review articles that sur vey, and provide an introduction to, interesting problems in the field. The workshop was an integral part of the 1997-98 IMA program on "EMERG ING APPLICATIONS OF DYNAMICAL SYSTEMS." I would like to thank Martin Golubitsky, University of Houston (Math ematics) Dan Luss, University of Houston (Chemical Engineering), and Steven H. Strogatz, Cornell University (Theoretical and Applied Mechan ics) for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Foundation (NSF), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE Pattern formation has been studied intensively for most of this cen tury by both experimentalists and theoreticians, and there have been many workshops and conferences devoted to the subject. In the IMA workshop on Pattern Formation in Continuous and Coupled Systems held May 11-15, 1998 we attempted to focus on new directions in the patterns literature.
Download or read book Nonlinear Dynamics and Computational Physics written by V. B. Sheorey and published by Alpha Science Int'l Ltd.. This book was released on 1999 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 24 articles presented in this volume cover emerging areas in nonlinear dynamics. They discuss a range of topics, from chaotic quantum systems to nonlinear dynamics of the earth's magnetosphere and from microscopic chaos and nonequilibrium statistical mechanics to nonlinear dynamics of human brain activity. The articles are written by leading researchers both from India and other countries. It is hoped that the volume will provide information and inspiration, and suggest new research directions, both to the expert and novice alike.
Download or read book Bifurcations with D4 Symmetry and Spatial Pattern Selection written by Mary Catherine Silber and published by . This book was released on 1989 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Bifurcation Theory and Spatio Temporal Pattern Formation written by Wayne Nagata and published by American Mathematical Soc.. This book was released on 2006-10-03 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear dynamical systems and the formation of spatio-temporal patterns play an important role in current research on partial differential equations. This book contains articles on topics of current interest in applications of dynamical systems theory to problems of pattern formation in space and time. Topics covered include aspects of lattice dynamical systems, convection in fluid layers with large aspect ratios, mixed mode oscillations and canards, bacterial remediation of waste, gyroscopic systems, data clustering, and the second part of Hilbert's 16th problem. Most of the book consists of expository survey material, and so can serve as a source of convenient entry points to current research topics in nonlinear dynamics and pattern formation. This volume arose from a workshop held at the Fields Institute in December of 2003, honoring Professor William F. Langford's fundamental work on the occasion of his sixtieth birthday. Information for our distributors: Titles in this series are copublished with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).