Download or read book Harmonic Morphisms Harmonic Maps and Related Topics written by Christopher Kum Anand and published by CRC Press. This book was released on 1999-10-13 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of harmonic morphisms is relatively new but has attracted a huge worldwide following. Mathematicians, young researchers and distinguished experts came from all corners of the globe to the City of Brest - site of the first, international conference devoted to the fledgling but dynamic field of harmonic morphisms. Harmonic Morphisms, Harmonic Maps, and Related Topics reports the proceedings of that conference, forms the first work primarily devoted to harmonic morphisms, bringing together contributions from the founders of the subject, leading specialists, and experts in other related fields. Starting with "The Beginnings of Harmonic Morphisms," which provides the essential background, the first section includes papers on the stability of harmonic morphisms, global properties, harmonic polynomial morphisms, Bochner technique, f-structures, symplectic harmonic morphisms, and discrete harmonic morphisms. The second section addresses the wider domain of harmonic maps and contains some of the most recent results on harmonic maps and surfaces. The final section highlights the rapidly developing subject of constant mean curvature surfaces. Harmonic Morphisms, Harmonic Maps, and Related Topics offers a coherent, balanced account of this fast-growing subject that furnishes a vital reference for anyone working in the field.
Download or read book Developments of Harmonic Maps Wave Maps and Yang Mills Fields into Biharmonic Maps Biwave Maps and Bi Yang Mills Fields written by Yuan-Jen Chiang and published by Springer Science & Business Media. This book was released on 2013-06-18 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harmonic maps between Riemannian manifolds were first established by James Eells and Joseph H. Sampson in 1964. Wave maps are harmonic maps on Minkowski spaces and have been studied since the 1990s. Yang-Mills fields, the critical points of Yang-Mills functionals of connections whose curvature tensors are harmonic, were explored by a few physicists in the 1950s, and biharmonic maps (generalizing harmonic maps) were introduced by Guoying Jiang in 1986. The book presents an overview of the important developments made in these fields since they first came up. Furthermore, it introduces biwave maps (generalizing wave maps) which were first studied by the author in 2009, and bi-Yang-Mills fields (generalizing Yang-Mills fields) first investigated by Toshiyuki Ichiyama, Jun-Ichi Inoguchi and Hajime Urakawa in 2008. Other topics discussed are exponential harmonic maps, exponential wave maps and exponential Yang-Mills fields.
Download or read book Harmonic Maps Between Riemannian Polyhedra written by James Eells and published by Cambridge University Press. This book was released on 2001-07-30 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A research level book on harmonic maps between singular spaces, by renowned authors, first published in 2001.
Download or read book Two Reports On Harmonic Maps written by James Eells and published by World Scientific. This book was released on 1995-03-29 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, σ-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and Kählerian manifolds.A standard reference for this subject is a pair of Reports, published in 1978 and 1988 by James Eells and Luc Lemaire.This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers.
Download or read book The Analysis Of Harmonic Maps And Their Heat Flows written by Fanghua Lin and published by World Scientific. This book was released on 2008-05-23 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad yet comprehensive introduction to the analysis of harmonic maps and their heat flows. The first part of the book contains many important theorems on the regularity of minimizing harmonic maps by Schoen-Uhlenbeck, stationary harmonic maps between Riemannian manifolds in higher dimensions by Evans and Bethuel, and weakly harmonic maps from Riemannian surfaces by Helein, as well as on the structure of a singular set of minimizing harmonic maps and stationary harmonic maps by Simon and Lin. The second part of the book contains a systematic coverage of heat flow of harmonic maps that includes Eells-Sampson's theorem on global smooth solutions, Struwe's almost regular solutions in dimension two, Sacks-Uhlenbeck's blow-up analysis in dimension two, Chen-Struwe's existence theorem on partially smooth solutions, and blow-up analysis in higher dimensions by Lin and Wang.The book can be used as a textbook for the topic course of advanced graduate students and for researchers who are interested in geometric partial differential equations and geometric analysis.
Download or read book Geometry Topology and Physics written by Boris N. Apanasov and published by Walter de Gruyter. This book was released on 2011-06-24 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Download or read book Constant Mean Curvature Surfaces Harmonic Maps and Integrable Systems written by Frederic Hélein and published by Birkhäuser. This book was released on 2012-12-06 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book intends to give an introduction to harmonic maps between a surface and a symmetric manifold and constant mean curvature surfaces as completely integrable systems. The presentation is accessible to undergraduate and graduate students in mathematics but will also be useful to researchers. It is among the first textbooks about integrable systems, their interplay with harmonic maps and the use of loop groups, and it presents the theory, for the first time, from the point of view of a differential geometer. The most important results are exposed with complete proofs (except for the last two chapters, which require a minimal knowledge from the reader). Some proofs have been completely rewritten with the objective, in particular, to clarify the relation between finite mean curvature tori, Wente tori and the loop group approach - an aspect largely neglected in the literature. The book helps the reader to access the ideas of the theory and to acquire a unified perspective of the subject.
Download or read book An Introduction to the Regularity Theory for Elliptic Systems Harmonic Maps and Minimal Graphs written by Mariano Giaquinta and published by Springer Science & Business Media. This book was released on 2013-07-30 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume deals with the regularity theory for elliptic systems. We may find the origin of such a theory in two of the problems posed by David Hilbert in his celebrated lecture delivered during the International Congress of Mathematicians in 1900 in Paris: 19th problem: Are the solutions to regular problems in the Calculus of Variations always necessarily analytic? 20th problem: does any variational problem have a solution, provided that certain assumptions regarding the given boundary conditions are satisfied, and provided that the notion of a solution is suitably extended? During the last century these two problems have generated a great deal of work, usually referred to as regularity theory, which makes this topic quite relevant in many fields and still very active for research. However, the purpose of this volume, addressed mainly to students, is much more limited. We aim to illustrate only some of the basic ideas and techniques introduced in this context, confining ourselves to important but simple situations and refraining from completeness. In fact some relevant topics are omitted. Topics include: harmonic functions, direct methods, Hilbert space methods and Sobolev spaces, energy estimates, Schauder and L^p-theory both with and without potential theory, including the Calderon-Zygmund theorem, Harnack's and De Giorgi-Moser-Nash theorems in the scalar case and partial regularity theorems in the vector valued case; energy minimizing harmonic maps and minimal graphs in codimension 1 and greater than 1. In this second deeply revised edition we also included the regularity of 2-dimensional weakly harmonic maps, the partial regularity of stationary harmonic maps, and their connections with the case p=1 of the L^p theory, including the celebrated results of Wente and of Coifman-Lions-Meyer-Semmes.
Download or read book Minimal Surfaces I written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can alsobe useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory fornonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature.
Download or read book Cartesian Currents in the Calculus of Variations II written by Mariano Giaquinta and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-scalar variational problems appear in different fields. In geometry, for in stance, we encounter the basic problems of harmonic maps between Riemannian manifolds and of minimal immersions; related questions appear in physics, for example in the classical theory of a-models. Non linear elasticity is another example in continuum mechanics, while Oseen-Frank theory of liquid crystals and Ginzburg-Landau theory of superconductivity require to treat variational problems in order to model quite complicated phenomena. Typically one is interested in finding energy minimizing representatives in homology or homotopy classes of maps, minimizers with prescribed topological singularities, topological charges, stable deformations i. e. minimizers in classes of diffeomorphisms or extremal fields. In the last two or three decades there has been growing interest, knowledge, and understanding of the general theory for this kind of problems, often referred to as geometric variational problems. Due to the lack of a regularity theory in the non scalar case, in contrast to the scalar one - or in other words to the occurrence of singularities in vector valued minimizers, often related with concentration phenomena for the energy density - and because of the particular relevance of those singularities for the problem being considered the question of singling out a weak formulation, or completely understanding the significance of various weak formulations becames non trivial.
Download or read book Several Complex Variables and Complex Geometry Part II written by Eric Bedford and published by American Mathematical Soc.. This book was released on 1991 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computational Micromagnetism written by Andreas Prohl and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this monograph is a numerical analysis of the well-accepted models of Landau, Lifshitz and Gilbert for (electrically conducting) ferromagnets. Part I discusses convergence behavior of different finite element schemes for solving the stationary problem. Part II deals with numerical analyses of different penalization / projection strategies in nonstationary micromagnetism; it closes with a chapter on nematic liquid crystals to show applicability of these new methods to further applications.
Download or read book Riemannian Submersions and Related Topics written by Maria Falcitelli and published by World Scientific. This book was released on 2004 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the first-ever systematic introduction to thetheory of Riemannian submersions, which was initiated by BarrettO''Neill and Alfred Gray less than four decades ago. The authorsfocus their attention on classification theorems when the total spaceand the fibres have nice geometric properties.
Download or read book HARMONIC MAPS BETWEEN ASYMPTOTICALLY HYPERBOLIC SPACES written by MAN CHUN LEUNG and published by . This book was released on 1991 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: original map. In the appendix, we discuss the analogue between conformally flat manifolds of non-positive scalar curvature and manifolds of non-positive sectional curvature.
Download or read book Global Analysis of Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichmüller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateau ́s problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.
Download or read book Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 699 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem and Tomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.
Download or read book Regularity of Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateau ́s problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateau ́s problem have no interior branch points.