EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Behavior of Precast Bridge Deck Joints with Small Bend Diameter U Bars

Download or read book Behavior of Precast Bridge Deck Joints with Small Bend Diameter U Bars written by Cheryl Elizabeth Chapman and published by . This book was released on 2010 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Interstate Highway System plays a vital role in our economic development by providing a continuous corridor for transporting goods and services. Currently, there is a need for repair and expansion of the existing highways, which include all bridges along its path. Because of the high demand for the highway system, repair and expansion must occur rapidly and efficiently. In recent years, precast bridge deck systems have become an efficient way to reduce construction time during repair. This thesis presents the experimental research of the behavior of the U-Bar joint detail used in precast bridge deck systems. This detail consists of staggered reinforcement extending beyond the precast deck portion into the joint. Six specimens utilizing the U-Bar detail were constructed and tested. Three specimens were tested in flexure to simulate the forces applied in a longitudinal deck joint, while three specimens were tested in pure tension to simulate the forces experienced in a transverse deck joint located over an interior pier. A tight 180° bend at 3d[subscript b] was desired in order to minimize the thickness of the deck. To achieve this tight bend, deformed wire reinforcement was chosen for the U-Bar detail due to the favorable material properties of deformed wire reinforcement. The purpose of the testing was to determine if the joint details could generate a precast deck system that could emulate the monolithic cast-in-place deck systems already in use. For monolithic behavior in a precast deck system, the joints must be able transfer shear, tension and moments. In this research, the joint overlap length was the most dominant variable, and should not be less than 152.4 mm (6"). The precast bridge deck joint should consist of high strength concrete with f'[subscript c] of at least 68.9 MPa (10 ksi). The longitudinal reinforcement spacing should be no greater than 152.4 mm (6").

Book Experimental Investigation of Precast Bridge Deck Joints with U bar and Headed Bar Joint Details

Download or read book Experimental Investigation of Precast Bridge Deck Joints with U bar and Headed Bar Joint Details written by and published by . This book was released on 2009 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents the experimental investigation of two joint details for use in precast bridge deck systems. U-bar and headed bar joint details were developed for use in accelerated construction applications. Both details, in practice, would consist of staggered protruding reinforcement that would allow for the anchorage of the precast deck component into the joint. Six specimens containing the joint details were constructed and tested. Three specimens were tested in flexure to simulate the forces that would be experienced in a longitudinal deck joint, and three specimens were tested in tension to simulate the forces that would be experienced in a transverse joint over an interior pier. The three specimens of each test type consisted of one specimen containing the headed bar detail and two specimens containing the u-bar detail. The u-bar detail was tested utilizing two materials, welded wire reinforcement and stainless steel reinforcement. Welded wire reinforcement and stainless steel reinforcement were used for the u-bar detail due to their ductility which was needed to fabricate the tight bend (3d[subscript b]) used in the detail. The tight bend was used to minimize the thickness of the deck. The main objective of the testing was to determine if the joint details could create a precast deck system that could emulate the monolithic behavior of the predominately used cast-in-place deck systems. To achieve monolithic behavior in a precast deck system the joints must be able to transfer shear and tension forces as well as moments. The second objective of this investigation was to determine the best performing detail for further investigation. The additional investigation of the best performing joint detail would then be the first step in creating standard design guidelines and details to ease the future implementation of joints for precast bridge deck systems.

Book Proceedings of the 9th fib International PhD Symposium in Civil Engineering   Karlsruhe Institute of Technology  KIT   22   25 July 2012  Karlsruhe  Germany

Download or read book Proceedings of the 9th fib International PhD Symposium in Civil Engineering Karlsruhe Institute of Technology KIT 22 25 July 2012 Karlsruhe Germany written by Mueller, Harald S. and published by KIT Scientific Publishing. This book was released on 2012-07-20 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fib International PhD Symposium in Civil Engineering is an established event in the academic calendar of doctoral students. It is held under the patronage of the International Federation for Structural Concrete (fib), one of the main international associations that disseminates knowledge about concrete and concrete structures. The 9th fib International PhD Symposium was held at the Karlsruhe Institute of Technology (KIT), Germany, from July 22 to 25, 2012.

Book Precast Bridge Deck Joints Using FRP and Ultra high Performance Concrete

Download or read book Precast Bridge Deck Joints Using FRP and Ultra high Performance Concrete written by Augustine Kuuku Banson and published by . This book was released on 2013 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for rapid construction or replacement of highway bridge decks can be addressed by precast concrete elements reinforced with Glass Fiber Reinforced Polymer (GFRP) bars with cast-in-place joints made using Ultra-High Performance Concrete (UHPC). This thesis investigates the bond between GFRP bars and UHPC and splice length optimization to obtain narrow joints and simplified bar geometries. Multiple linear regression analyses of existing bond data indicate that the bar's Young's Modulus and embedded length are the most significant parameters that influence the average bond strength of sand-coated GFRP bars in UHPC: increasing either decreases the average bond strength. Linear-elastic uncracked Finite Element analysis of pull-out specimens indicates that reinforcing bars with low Young's Moduli have highly non-uniform bond distributions along their length and so exhibit high peak bond stresses and low average bond strengths. The higher average bond strengths observed for High Modulus (HM) GFRP bars compared to Low Modulus (LM) GFRP bars is likely because the HM GFRP bars have lower interlaminar shear strength. A methodology for GFRP reinforcement design that synthesizes provisions from the Flexural Design Method in the Canadian Highway Bridge Design Code including an additional new step to determine bar splice lengths in UHPC was developed. Splice lengths and bond resistance factors for HM GFRP bars in UHPC are determined by reliability analysis to resist either bar stresses due to the factored applied moments or the mean ultimate tensile strength of the bar. A significant reduction in splice length can be achieved if splices are designed to resist the bar stresses at factored applied moments. A new resistance factor of 0.5 for bond of GFRP bars in UHPC is also recommended.

Book Behavior of bridge decks with precast panels at expansion joints

Download or read book Behavior of bridge decks with precast panels at expansion joints written by Christin Jennifer Coselli and published by . This book was released on 2004 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Performance of Transverse Post tensioned Joints Subjected to Negative Bending and Shear Stresses on Full Scale  Full Depth  Precast Concrete Bridge Deck Systems

Download or read book Performance of Transverse Post tensioned Joints Subjected to Negative Bending and Shear Stresses on Full Scale Full Depth Precast Concrete Bridge Deck Systems written by Kayde Steven Roberts and published by . This book was released on 2011 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accelerated bridge construction has quickly become the preferred method for the Utah Department of Transportation (UDOT) as well as many other DOT's across the United States. This type of construction requires the use of full depth precast panels for the construction of the bridge deck. The segmented deck panels produce transverse joints between panels and have come to be known as the weakest portion of the deck. Cracking often occurs at these joints and is reflected through the deck overlay where water accesses and begins corrosion of the reinforcement and superstructure below. For this reason post-tensioning of the deck panels is becoming a regular practice to ensure that the deck behaves more monolithically, limiting cracking. The current post-tensioning used by UDOT inhibits future replacement of single deck panels and requires that all panels be replaced once one panel is deemed defective. The new curved bolt connection provides the necessary compressive stresses across the transverse joints but makes future replacement of a single deck panel possible without replacing the entire bridge deck. To better understand the behavior of the new curved bolt connection under loadings, laboratory testing was undertaken on both the curved bolt and the current post-tensioning used by UDOT. The testing specimens included full-scale, full-depth, precast panels that were connected using both system. The testing induced typical stresses on the panels and connections, subjecting them to negative bending and shear. The overall performance of the curved bolt proved satisfactory. The moment capacity of both connections surpassed all theoretical calculations. The yield and plastic moments were 17% and 16% lower, respectively, than the UDOT post-tension system while at those moments deflection was relatively the same. Due to the anchorage location of the curved bolts, the reinforcement around the transverse joint received up to 5 times the strain of that of the post-tension connections. Although both systems performed well when subjected to shear forces and as compared to the theoretical capacities, the post-tension connection greatly surpassed the curved bolt in shear capacity.

Book Influence of Precast Concrete Panel Surface Condition on Behavior of Composite Bridge Decks at Skewed Expansion Joints

Download or read book Influence of Precast Concrete Panel Surface Condition on Behavior of Composite Bridge Decks at Skewed Expansion Joints written by Kristen Shawn Donnelly and published by . This book was released on 2009 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following development of rectangular prestressed, precast concrete panels (PCP) that could be used as stay-in-place formwork adjacent to expansion joints in bridge decks, the Texas Department of Transportation (TxDOT) initiated a research effort to investigate the use of PCP units at skewed expansion joints. The fabrication of trapezoidal PCP units was studied and the response of skewed panels with 45° and 30° skew angles was obtained. The panels were topped with a 4 in. thick cast-in-place (CIP) slab to complete the bridge deck. Specimens with 45° skew performed well under service and overload levels. The deck failed in diagonal shear at loads well over the design level loads. However, two 30° specimens failed prematurely by delamination between the topping slab and the PCP. The cause of the delamination was insufficient shear transfer capacity between the PCP and CIP topping slab. For the specimens tested at a square end, the failure mode was punching shear at high loads for all specimens. The surface condition of the PCP was specified to have a "broom finish" and the panel was to have a saturated surface dry (SSD) condition so that PCP units would not leach moisture from the CIP topping slab. Neither of these conditions was satisfied in the two panels that failed prematurely. Although the panels were specified to have a broom finish, the panel surface had regions that were quite smooth. The objective of this research project was to reinvestigate the response of 30° PCP at an expansion joint following specified procedures for finish and moisture conditions. One specimen was constructed with a rectangular panel placed between two 30° skewed panels. These panels had a much rougher surface texture than the previously tested panels that failed in delamination. The skewed ends of the specimen were subjected to monotonically increasing static loads at midspan of the panel ends. The panels failed in diagonal shear and the response of the tested specimen confirmed that the panel surface roughness, and not the skew angle, caused delamination with the previously tested specimens. While TxDOT does not currently specify a minimum panel surface roughness, a surface roughness of approximately 1/4 in. is required in some codes for developing composite action. In addition, wetting the panels to a SSD condition prior to placement of the topping slab further enhances shear transfer between the topping slab and the PCP.

Book Engineering for Structural Stability in Bridge Construction

Download or read book Engineering for Structural Stability in Bridge Construction written by Federal Highway Federal Highway Administration and published by . This book was released on 2020-07-19 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: This manual is intended to serve as a reference. It will provide technical information which will enable Manual users to perform the following activities:Describe typical erection practices for girder bridge superstructures and recognize critical construction stagesDiscuss typical practices for evaluating structural stability of girder bridge superstructures during early stages of erection and throughout bridge constructionExplain the basic concepts of stability and why it is important in bridge erection* Explain common techniques for performing advanced stability analysis along with their advantages and limitationsDescribe how differing construction sequences effect superstructure stabilityBe able to select appropriate loads, load combinations, and load factors for use in analyzing superstructure components during constructionBe able to analyze bridge members at various stages of erection* Develop erection plans that are safe and economical, and know what information is required and should be a part of those plansDescribe the differences between local, member and global (system) stability

Book Bridge Deck Analysis

Download or read book Bridge Deck Analysis written by Eugene J. Obrien and published by CRC Press. This book was released on 2014-10-06 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Captures Current Developments in Bridge Design and MaintenanceRecent research in bridge design and maintenance has focused on the serviceability problems of older bridges with aging joints. The favored solution of integral construction and design has produced bridges with fewer joints and bearings that require less maintenance and deliver increased

Book Computer Modeling and Investigation on the Steel Corrosion in Cracked Ultra High Performance Concrete

Download or read book Computer Modeling and Investigation on the Steel Corrosion in Cracked Ultra High Performance Concrete written by Alireza Rafiee and published by kassel university press GmbH. This book was released on 2012 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book LRFD Guide Specifications for the Design of Pedestrian Bridges

Download or read book LRFD Guide Specifications for the Design of Pedestrian Bridges written by American Association of State Highway and Transportation Officials and published by AASHTO. This book was released on 2009 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bond of Reinforcement in Concrete

Download or read book Bond of Reinforcement in Concrete written by fib Fédération internationale du béton and published by fib Fédération internationale du béton. This book was released on 2000-01-01 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In 1993, the CEB Commission 2 Material and Behavior Modelling established the Task Group 2.5 Bond Models. It's terms of reference were ... to write a state-of-art report concerning bond of reinforcement in concrete and later recommend how the knowledge could be applied in practice (Model Code like text proposal)... {This work} covers the first part ... the state-of-art report."--Pref.

Book Is Sp 34   Handbook On Concrete Reinforcement And Detailing

Download or read book Is Sp 34 Handbook On Concrete Reinforcement And Detailing written by Bis and published by . This book was released on 1987-01-01 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book AASHTO Guide for Design of Pavement Structures  1993

Download or read book AASHTO Guide for Design of Pavement Structures 1993 written by American Association of State Highway and Transportation Officials and published by AASHTO. This book was released on 1993 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.

Book International Congress on Polymers in Concrete  ICPIC 2018

Download or read book International Congress on Polymers in Concrete ICPIC 2018 written by Mahmoud M. Reda Taha and published by Springer. This book was released on 2018-04-06 with total page 699 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects the proceedings from the International Congress of Polymers in Concrete 2018 (ICPIC), held under the theme “Polymers for Resilient and Sustainable Concrete Infrastructure.” ICPIC 2018 provides an opportunity for researchers and specialists working in the fields of polymers to exchange ideas and follow the latest progress in the use of polymers in concrete infrastructure. It also showcases the use of polymers and polymer concrete in sustainable and resilient development, and provides a platform for local and overseas suppliers, developers, manufacturers and contractors using polymers, polymer concrete and polymer composites in concrete structures to develop new business opportunities and follow the latest developments in the field. The International Congress of Polymers in Concrete is an international forum that has taken place every three years for the last 40 years with the objective of following progress in the field of polymers and their use in concrete and construction. Following 15 successful congresses held in London (1975), Austin (1978), Koriyama (1981), Darmstadt (1984), Brighton (1987), Shanghai (1990), Moscow (1992), Oostende (1995), Bologna (1998), Honolulu (2001), Berlin (2004), Chuncheon (2007), Funchal (2010), Shanghai (2013) and Singapore (2015), the 16th ICPIC will take place in Washington, DC, from April 29 to May 1st, 2018.

Book Steel concrete Composite Bridges

Download or read book Steel concrete Composite Bridges written by David Collings and published by Thomas Telford. This book was released on 2005 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Steel-concrete composite bridges shows how to choose the bridge form and design element sizes to enable the production of accurate drawings and also highlights a wide and full range of examples of the design and construction of this bridge type."--Jacket.