EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Behavior of High Strength Fiber Reinforced Concrete Beams in Shear

Download or read book Behavior of High Strength Fiber Reinforced Concrete Beams in Shear written by Dawood Abdulhai Pandor and published by . This book was released on 1994 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fibrous Concrete

Download or read book Fibrous Concrete written by Concrete Society and published by . This book was released on 1980 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book fib Model Code for Concrete Structures 2010

Download or read book fib Model Code for Concrete Structures 2010 written by fib - federation internationale du beton and published by John Wiley & Sons. This book was released on 2013-12-04 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Federation for Structural Concrete (fib) is a pre-normative organization. 'Pre-normative' implies pioneering work in codification. This work has now been realized with the fib Model Code 2010. The objectives of the fib Model Code 2010 are to serve as a basis for future codes for concrete structures, and present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. The fib Model Code 2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement. It is expected to become an important document for both national and international code committees, practitioners and researchers. The fib Model Code 2010 was produced during the last ten years through an exceptional effort by Joost Walraven (Convener; Delft University of Technology, The Netherlands), Agnieszka Bigaj-van Vliet (Technical Secretary; TNO Built Environment and Geosciences, The Netherlands) as well as experts out of 44 countries from five continents.

Book Shear Behavior of Fiber Reinforced High Strength Concrete Beams

Download or read book Shear Behavior of Fiber Reinforced High Strength Concrete Beams written by Amjad Shahbazker and published by . This book was released on 1993 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Steel Fiber Reinforced Concrete

Download or read book Steel Fiber Reinforced Concrete written by Harvinder Singh and published by Springer. This book was released on 2016-10-26 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to develop an analytical flexural model for the analysis and design of SFRC members. The lack of such a discussion is a major hindrance to the adoption of SFRC as a structural material in routine design practice. This book helps users appraise the role of fiber as reinforcement in concrete members used alone and/or along with conventional rebars. Applications to singly and doubly reinforced beams and slabs are illustrated with examples, using both SFRC and conventional reinforced concrete as a structural material. The influence of the addition of steel fibers on various mechanical properties of the SFRC members is discussed in detail, which is invaluable in helping designers and engineers create optimum designs. Lastly, it describes the generally accepted methods for specifying the steel fibers at the site along with the SFRC mixing methods, storage and transport and explains in detail methods to validate the adopted design. This book is useful to practicing engineers, researchers, and students.

Book Shear Behavior of Steel  fiber Reinforced Ultra  High strength Self  compacted Concrete Beams

Download or read book Shear Behavior of Steel fiber Reinforced Ultra High strength Self compacted Concrete Beams written by Omar Jumah Zaal Rawashdeh and published by . This book was released on 2015 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultra-high-strength concrete is a new class of concrete that has been the result of the progress in concrete material science and development. This new type of concrete is characterized with very high compressive strength; about 100 MPa. Ultra-high strength concrete shows very brittle failure behavior compared to normal-strength concrete. Steel fibers will significantly reduce the workability of ultra-high strength concrete. The development and use of self-compacting concrete has provided a solution to the workability issue. The combination of technology and knowledge to produce Ultra-High strength fiber reinforced self-compacting concrete was proved to be feasible. Few studies investigated the effect of incorporating steel fibers on the shear behavior of ultra-high-strength reinforced concrete beams. The research consists of a test series and analytical investigation. The present research investigated the shear behavior of reinforced beams made of normal-strength-concrete fiber-reinforced self-compacting concrete (28 MPa), high-strength concrete fiber-reinforced self-compacting concrete (60 MPa) and ultra-high-strength fiber-reinforced self-compacting concrete (100 MPa). The test parameters included two different shear span-to-depth ratios of 2.22 (deep beam action) and 3.33 (slender beam action), and three different steel fiber volume fractions of 0.4%, 0.8%, and 1.2%. The test results showed that the shear strength gain ranged from 20% to 129% for the beams having a concrete grade of 28 MPa, 26% to 63% for the beams having a concrete grade of 60 MPa, and 8.6% to 94% for the beams with a concrete grade of 100 MPa. For the deep beams, the shear strength gain tended to decrease by increasing the concrete grade. For the slender beams with steel fiber volume fractions of 0.4% and 0.8%, varying the concrete grade had no obvious effect on the shear strength gain. For the viii slender beams with the higher steel fiber volume fraction of 1.2%, the shear strength gain tended to decrease with an increase in the concrete grade. In the analytical investigation, the accuracy and validity of published analytical models have been demonstrated. Predictions of analytical models by Ashour et al. (1992) and Narayanan et al. (1987) were in good agreement with the experimental results.

Book Fibre Reinforced Cementitious Composites  Second Edition

Download or read book Fibre Reinforced Cementitious Composites Second Edition written by Arnon Bentur and published by CRC Press. This book was released on 2006-11-22 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced cementitious composites can be designed to have outstanding combinations of strength (five to ten times that of conventional concrete) and energy absorption capacity (up to 1000 times that of plain concrete). This second edition brings together in one volume the latest research developments in this rapidly expanding area. The book is split into two parts. The first part is concerned with the mechanics of fibre reinforced brittle matrices and the implications for cementitious systems. In the second part the authors describe the various types of fibre-cement composites, discussing production processes, mechanical and physical properties, durability and applications. Two new chapters have been added, covering fibre specification and structural applications. Fibre Reinforced Cementitious Composites will be of great interest to practitioners involved in modern concrete technology and will also be of use to academics, researchers and graduate students.

Book Behavior of High Strength Reinforced Concrete Beams with Various Reinforcements

Download or read book Behavior of High Strength Reinforced Concrete Beams with Various Reinforcements written by Abdullah Almakrab and published by . This book was released on 2017 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this study is to investigate the behavior of high strength concrete beams reinforced with various reinforcement under monotonic loading with various shear span-to-depth ratios and to compare the measured load-deflection history with the available prediction equations. In this study, eight high strength concrete (HSC) beams were prepared and cast using a concrete strength of 10 ksi. All beams spanned 7 ft. and were 12 inches deep and 6 inches' wide. Some of beams were reinforced with conventional #5 steel and others were reinforced with carbon fiber (CF) and glass fiber grids. Three beams were reinforced with #3 stirrups at 8 inches spacing and one beam was reinforced with #3 stirrups at 3-inch spacing. The beams were simply supported under monotonic four-point bending load using a servo-valve actuator with a capacity of 75 kips under three shear span-to-depth ratios. The data collected in this study included load-displacement-history at midspan, steel and carbon fiber strains, mode of failure and crack patterns. The experimental results were compared to analytical models from the literature. The models are very commonly used to predict the effective moment of inertia of reinforced concrete beams and consequently predict the deflection at the cracking and at the ultimate loads. The study concluded that the behavior of the HSC beams was dependent on the type of reinforcement and on the shear span-to-depth ratio as well as the availability of transverse reinforcement. The analytical models, predictions of failure ultimate loads and mode of failure were in good agreement with the experimental results. For the HSC beams reinforced with steel bars, Branson's deflection equation highly overestimated the deflection. For beams reinforced with CFRP and GFRP grids, the analytical equations underestimated the deflection at the midspan, which suggests the need to modify the existing deflection equations when HSC is reinforced with carbon fiber grids.

Book Shear Behavior of Fiber Reinforced Concrete Beams with Stirrups

Download or read book Shear Behavior of Fiber Reinforced Concrete Beams with Stirrups written by Sugiarto Loni and published by . This book was released on 1983 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Guide for the Design and Construction of Concrete Reinforced with Fiber Reinforced Polymer Bars

Download or read book Guide for the Design and Construction of Concrete Reinforced with Fiber Reinforced Polymer Bars written by ACI Committee 440 and published by . This book was released on 2003 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Structural Applications of Fiber Reinforced Concrete

Download or read book Structural Applications of Fiber Reinforced Concrete written by Nemkumar Banthia and published by . This book was released on 1999 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Behavior of High Performance Steel as Shear Reinforcement for Concrete Beams

Download or read book Behavior of High Performance Steel as Shear Reinforcement for Concrete Beams written by Matthew Scott Sumpter and published by . This book was released on 2007 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: Keywords: reinforced concrete beams, shear, high performance steel, MMFX, high strength, crack width.

Book Ultra High Performance Hybrid Fiber Reinforced Concrete Beams  Shear Behavior

Download or read book Ultra High Performance Hybrid Fiber Reinforced Concrete Beams Shear Behavior written by 趙嘉盟 and published by . This book was released on 2018 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Civil Engineering and Building Materials

Download or read book Advances in Civil Engineering and Building Materials written by Shuenn-Yih Chang and published by CRC Press. This book was released on 2012-10-31 with total page 974 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Civil Engineering and Building Materials presents the state-of-the-art development in: - Structural Engineering - Road & Bridge Engineering- Geotechnical Engineering- Architecture & Urban Planning- Transportation Engineering- Hydraulic Engineering - Engineering Management- Computational Mechanics- Construction Technology- Buildi

Book Shear Behavior of Steel Fiber Reinforced Prestressed Concrete Beams Without Shear Reinforcement

Download or read book Shear Behavior of Steel Fiber Reinforced Prestressed Concrete Beams Without Shear Reinforcement written by Jae-Sung Cho and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The ACI 318-08 building code allows to use the steel fiber reinforcement as alternative shear reinforcement with satisfying certain criteria when a beam is required minimum shear reinforcement. However, this provision applies to a nonprestressed and prestressed concrete beam such that it could be conservative since the shear strength of prestressed concrete beam is generally enhanced due to the prestressing force. This is due partially to the fact that the provision has been accepted based on researches, mostly conducted in nonprestressed concrete beam. Most of experiments conducted for prestressed concrete beam in small scale tests, with a height of specimens were less than 10 in. A larger scale of experiment is required due to concerns of size effect. In addition, in order to evaluate the qualification of a Steel Fiber Reinforced Concrete (SFRC) mixture used for structural applications, such as increasing shear resistance, a material evaluation method is essential. Currently ASTM or ACI Committee 544 (Fiber-Reinforced Concrete) does not recommend any standardized test method for evaluating shear performance of a particular SFRC material. This study addresses the research gaps described above by testing large-scale Steel Fiber Reinforced Prestressed Concrete (SFRPC) beams as well as developing a simple laboratory test techniques. A total 13 simply-supported beams for large-scale test with a shear span to effective depth ratio of 3.0 and a height of 24 in. were subjected to monotonically-increased, concentrated load. The test parameters were mainly included compressive strength, volume fraction of steel fibers, compressive reinforcement ratio. The results of large-scale test showed that the use of hooked steel fibers in a volume fraction greater than or equal to 0.50% volume fraction of steel fibers (67 lb per cubic yard), which is less than requirement by ACI 318-08 (0.75%, 100 lb per cubic yard), led to substantial enhancement of shear behaviors including the first cracking, the ultimate, and ductility. High compressive strength of SFRC, greater than 9000 psi, which is higher than ACI 318-08 requirement (less than 6000 psi) could be used as well. However, there was no significant effect from compressive reinforcement ratio. A simply shear test method for SFRC was proposed in this study. The test apparatus is almost exactly the same as the conventional ASTM bending test with only minor modification, in addition, it could simulate a pure shear stress by adjusting loading and support positions. By introducing a proper reinforcement for bending stress, it was possible to evaluate shear performance of SFRC with clear and uncomplicated shear stress field in the critical section.

Book Fibre Cements and Fibre Concretes

Download or read book Fibre Cements and Fibre Concretes written by D. J. Hannant and published by John Wiley & Sons. This book was released on 1978 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Flexural Behavior of Steel Fiber Reinforced Prestressed Concrete Beams and Double Punch Test for Fiber Reinforced Concrete

Download or read book Flexural Behavior of Steel Fiber Reinforced Prestressed Concrete Beams and Double Punch Test for Fiber Reinforced Concrete written by Netra Bahadur Karki and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Steel fibers have widely been used in the past to reinforce brittle materials in many nonstructural applications such as pavement, tunneling lining, etc. On the basis of numerous previous studies, ACI 318-11 [2011] has recently accepted steel fiber as a minimum shear reinforcement replacement with minimum 0.75% volume fraction for both reinforced concrete and prestressed concrete members. However, not much previous research has talked about the flexural behavior of fiber reinforced concrete (FRC). As per ACI 318-11 for tension-controlled sections, the net tensile strains in the outermost layer of steel, et, should be greater than or equal to 0.005 and for the moment redistribution in continuous beam the section should sufficiently ductile (et [greater or equal to] 0.0075). For this, the sections should have small longitudinal reinforcement ratio which ultimately leads to an inefficient beam section with a large cross-sectional area. In contrast, the use of smaller concrete cross sections can lead to a diminished ductile flexural behavior as well as premature shear failure. In this context, the use of steel fiber reinforced concrete could be a potential solution since fiber can increase both the concrete shear strength and it's usable compressive strains. However limited previous researches on the flexural behavior on SFRC beams are available and most of them are of small scales and concentrated only basically for shear behavior. To the best of our knowledge, the large-scale prestressed fiber reinforced concrete beam specimens have yet to be studied for flexure behavior. In this project, six large scale prestressed concrete beams with or without steel fiber along with some material test were tested. Our experimental investigations indicated that even with inclusion of small percentage volume of fraction of steel fiber (Vf =0.75%) could not only increase the ductility and shear strength of the SFRPC beam but also change the failure pattern by increasing usable strain in concrete and steel. A modification on the limit for c/dt ratio and [phi] factor for design of flexural member given in current ACI could be proposed which could imply the smaller sections with higher longitudinal reinforcement ratio and less shear reinforcement. could be used. Any standard material test results have to ensure that FRC has, at least, been batched properly and it can give indications of probable performance when used in structures. In the current material testing method suggested by ACI, the third point bending test (ASTM C1609) has an inherent problem in that the coefficients of variations for post cracking strength and residual strength are generally very high on the order of 20%. The direct tensile test can be a more appropriate material. However, it is currently not recommended as standard method in the U.S. Because of it's difficultly in gripping arrangement which will lead to cracking of the specimen at the grips. Both the test methods also require close loop servo controlled machine. The round panel test method (ASTM C1550) requires large size specimen and heavy steel supports prevents performing test in small laboratories. Split cylinder test (ASTM C496), do not necessarily reflect the true properties of the material as the specimen is forced to fail in the line of the application of the load and the test method is also not recommended by ACI for SFRC. In order to improve the material assessment procedure, the double Punch Test (DPT) introduced by Chen in 1970 [Chen, 1970] was extensively evaluated to develop a simple, quick and reliable testing method for SFRC. Various tests were carried out in order to evaluate peak and residual strength, stiffness, strain hardening and softening, toughness and other post crack properties. Our test results indicated that the DPT method could be immersed as reliable, easier and economical material test method. It could be used to distinguish the peak strength, residual strength, toughness stiffness and crack resistance, of different SFRC mixtures with less scatter results compared to other material test methods.