Download or read book Beginning Julia Programming written by Sandeep Nagar and published by Apress. This book was released on 2017-11-25 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get started with Julia for engineering and numerical computing, especially data science, machine learning, and scientific computing applications. This book explains how Julia provides the functionality, ease-of-use and intuitive syntax of R, Python, MATLAB, SAS, or Stata combined with the speed, capacity, and performance of C, C++, or Java. You’ll learn the OOP principles required to get you started, then how to do basic mathematics with Julia. Other core functionality of Julia that you’ll cover, includes working with complex numbers, rational and irrational numbers, rings, and fields. Beginning Julia Programming takes you beyond these basics to harness Julia’s powerful features for mathematical functions in Julia, arrays for matrix operations, plotting, and more. Along the way, you also learn how to manage strings, write functions, work with control flows, and carry out I/O to implement and leverage the mathematics needed for your data science and analysis projects. "Julia walks like Python and runs like C". This phrase explains why Julia is quickly growing as the most favored option for data analytics and numerical computation. After reading and using this book, you'll have the essential knowledge and skills to build your first Julia-based application. What You'll Learn Obtain core skills in Julia Apply Julia in engineering and science applications Work with mathematical functions in Julia Use arrays, strings, functions, control flow, and I/O in Julia Carry out plotting and display basic graphics Who This Book Is For Those who are new to Julia; experienced users may also find this helpful as a reference.
Download or read book Think Julia written by Ben Lauwens and published by "O'Reilly Media, Inc.". This book was released on 2019-04-05 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’re just learning how to program, Julia is an excellent JIT-compiled, dynamically typed language with a clean syntax. This hands-on guide uses Julia 1.0 to walk you through programming one step at a time, beginning with basic programming concepts before moving on to more advanced capabilities, such as creating new types and multiple dispatch. Designed from the beginning for high performance, Julia is a general-purpose language ideal for not only numerical analysis and computational science but also web programming and scripting. Through exercises in each chapter, you’ll try out programming concepts as you learn them. Think Julia is perfect for students at the high school or college level as well as self-learners and professionals who need to learn programming basics. Start with the basics, including language syntax and semantics Get a clear definition of each programming concept Learn about values, variables, statements, functions, and data structures in a logical progression Discover how to work with files and databases Understand types, methods, and multiple dispatch Use debugging techniques to fix syntax, runtime, and semantic errors Explore interface design and data structures through case studies
Download or read book Introduction to Julia Programming written by Sandeep Nagar and published by . This book was released on 2017-05-05 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Julia walks like Python and runs like C". This phrase explains why Julia is fast growing as the most favoured option for data analytics and numerical computation. Julia is the fastest modern open-source language for data science, machine learning and scientific computing. Julia provides the functionality, ease-of-use and intuitive syntax of R, Python, MATLAB, SAS or Stata combined with the speed, capacity and performance of C, C++ or Java.Present books is both for beginners and experienced users. While experienced users can use this as a reference, new users can learn the fine details of julia program's composition. CHAPETRS: 1. Introduction, 2. Object Oriented programming, 3. Basic maths with Julia, 4. Complex Numbers, 5. Rational and Irrational numbers, 6. Mathematical Functions, 7.Arrays, 8. Arrays for matrix operations, 9. String,s 10. Functions, 11. Control Flow, 12. Input Output, 13.
Download or read book Hands On Design Patterns and Best Practices with Julia written by Tom Kwong and published by Packt Publishing Ltd. This book was released on 2020-01-17 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design and develop high-performance, reusable, and maintainable applications using traditional and modern Julia patterns with this comprehensive guide Key FeaturesExplore useful design patterns along with object-oriented programming in Julia 1.0Implement macros and metaprogramming techniques to make your code faster, concise, and efficientDevelop the skills necessary to implement design patterns for creating robust and maintainable applicationsBook Description Design patterns are fundamental techniques for developing reusable and maintainable code. They provide a set of proven solutions that allow developers to solve problems in software development quickly. This book will demonstrate how to leverage design patterns with real-world applications. Starting with an overview of design patterns and best practices in application design, you'll learn about some of the most fundamental Julia features such as modules, data types, functions/interfaces, and metaprogramming. You'll then get to grips with the modern Julia design patterns for building large-scale applications with a focus on performance, reusability, robustness, and maintainability. The book also covers anti-patterns and how to avoid common mistakes and pitfalls in development. You'll see how traditional object-oriented patterns can be implemented differently and more effectively in Julia. Finally, you'll explore various use cases and examples, such as how expert Julia developers use design patterns in their open source packages. By the end of this Julia programming book, you'll have learned methods to improve software design, extensibility, and reusability, and be able to use design patterns efficiently to overcome common challenges in software development. What you will learnMaster the Julia language features that are key to developing large-scale software applicationsDiscover design patterns to improve overall application architecture and designDevelop reusable programs that are modular, extendable, performant, and easy to maintainWeigh up the pros and cons of using different design patterns for use casesExplore methods for transitioning from object-oriented programming to using equivalent or more advanced Julia techniquesWho this book is for This book is for beginner to intermediate-level Julia programmers who want to enhance their skills in designing and developing large-scale applications.
Download or read book Julia Programming for Operations Research written by Changhyun Kwon and published by Changhyun Kwon. This book was released on 2019-03-03 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Last Updated: December 2020 Based on Julia v1.3+ and JuMP v0.21+ The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires "translation" among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP—Julia for Mathematical Programming—package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia
Download or read book Julia High Performance written by Avik Sengupta and published by Packt Publishing Ltd. This book was released on 2016-04-26 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design and develop high performing programs with Julia About This Book Learn to code high reliability and high performance programs Stand out from the crowd by developing code that runs faster than your peers' codes This book is intended for developers who are interested in high performance technical programming. Who This Book Is For This book is for beginner and intermediate Julia programmers who are interested in high performance technical computing. You will have a basic familiarity with Julia syntax, and have written some small programs in the language. What You Will Learn Discover the secrets behind Julia's speed Get a sense of the possibilities and limitations of Julia's performance Analyze the performance of Julia programs Measure the time and memory taken by Julia programs Create fast machine code using Julia's type information Define and call functions without compromising Julia's performance Understand number types in Julia Use Julia arrays to write high performance code Get an overview of Julia's distributed computing capabilities In Detail Julia is a high performance, high-level dynamic language designed to address the requirements of high-level numerical and scientific computing. Julia brings solutions to the complexities faced by developers while developing elegant and high performing code. Julia High Performance will take you on a journey to understand the performance characteristics of your Julia programs, and enables you to utilize the promise of near C levels of performance in Julia. You will learn to analyze and measure the performance of Julia code, understand how to avoid bottlenecks, and design your program for the highest possible performance. In this book, you will also see how Julia uses type information to achieve its performance goals, and how to use multuple dispatch to help the compiler to emit high performance machine code. Numbers and their arrays are obviously the key structures in scientific computing – you will see how Julia's design makes them fast. The last chapter will give you a taste of Julia's distributed computing capabilities. Style and approach This is a hands-on manual that will give you good explanations about the important concepts related to Julia programming.
Download or read book Tanmay Teaches Julia for Beginners A Springboard to Machine Learning for All Ages written by Tanmay Bakshi and published by McGraw Hill Professional. This book was released on 2019-12-06 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. A quick guide to start writing your own fun and useful Julia apps—no prior experience required! This engaging guide shows, step by step, how to build custom programs using Julia, the open-source, intuitive scripting language. Written by 15-year-old technology phenom Tanmay Bakshi, the book is presented in an accessible style that makes learning easy and enjoyable. Tanmay Teaches Julia for Beginners: A Springboard to Machine Learning for All Ages clearly explains the basics of Julia programming and takes a look at cutting-edge machine learning applications. You will also discover how to interface your Julia apps with code written in Python. Inside, you’ll learn to: • Set up and configure your Julia environment • Get up and running writing your own Julia apps • Define variables and use them in your programs • Use conditions, iterations, for-loops, and while-loops • Create, go through, and modify arrays • Build an app to manage things you lend and get back from your friends • Create and utilize dictionaries • Simplify maintenance of your code using functions • Apply functions on arrays and use functions recursively and generically • Understand and program basic machine learning apps
Download or read book Julia Programming Projects written by Adrian Salceanu and published by Packt Publishing Ltd. This book was released on 2018-12-26 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step guide that demonstrates how to build simple-to-advanced applications through examples in Julia Lang 1.x using modern tools Key FeaturesWork with powerful open-source libraries for data wrangling, analysis, and visualizationDevelop full-featured, full-stack web applications Learn to perform supervised and unsupervised machine learning and time series analysis with JuliaBook Description Julia is a new programming language that offers a unique combination of performance and productivity. Its powerful features, friendly syntax, and speed are attracting a growing number of adopters from Python, R, and Matlab, effectively raising the bar for modern general and scientific computing. After six years in the making, Julia has reached version 1.0. Now is the perfect time to learn it, due to its large-scale adoption across a wide range of domains, including fintech, biotech, education, and AI. Beginning with an introduction to the language, Julia Programming Projects goes on to illustrate how to analyze the Iris dataset using DataFrames. You will explore functions and the type system, methods, and multiple dispatch while building a web scraper and a web app. Next, you'll delve into machine learning, where you'll build a books recommender system. You will also see how to apply unsupervised machine learning to perform clustering on the San Francisco business database. After metaprogramming, the final chapters will discuss dates and time, time series analysis, visualization, and forecasting. We'll close with package development, documenting, testing and benchmarking. By the end of the book, you will have gained the practical knowledge to build real-world applications in Julia. What you will learnLeverage Julia's strengths, its top packages, and main IDE optionsAnalyze and manipulate datasets using Julia and DataFramesWrite complex code while building real-life Julia applicationsDevelop and run a web app using Julia and the HTTP packageBuild a recommender system using supervised machine learning Perform exploratory data analysis Apply unsupervised machine learning algorithmsPerform time series data analysis, visualization, and forecastingWho this book is for Data scientists, statisticians, business analysts, and developers who are interested in learning how to use Julia to crunch numbers, analyze data and build apps will find this book useful. A basic knowledge of programming is assumed.
Download or read book Julia Bit by Bit written by Noel Kalicharan and published by Springer Nature. This book was released on 2021-07-15 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this book is to teach fundamental programming principles to beginners using Julia, one of the fastest growing programming languages today. Julia can be classified as a "modern" language, possessing many features not available in more popular languages like C and Java. The book is organized in 10 chapters. Chapter 1 gives an overview of the programming process. It shows how to write a first Julia program and introduces some of the basic building blocks needed to write programs. Chapter 2 is all about numbers—integers, floating-point, operators, expressions—how to work with them and how to print them. Chapter 3 shows how to write programs which can make decisions. It explains how to use if and if...else statements. Chapter 4 explains the notion of ‘looping’, implemented using for and while statements. It also explains how to read data from a file and write results to a file. Chapter 5 formally treats with functions, enabling a (large) program to be broken up into smaller manageable units which work together to solve a given problem. Chapter 6 is devoted to characters and strings. In Julia, we can work with them as seamlessly as we do with numbers. Chapter 7 tackles array processing, which is significantly easier in Julia than other languages. Chapter 8 is about sorting and searching techniques. Sorting puts data in an order that can be searched more quickly/easily, and makes it more palatable for human consumption. Chapter 9 introduces structures, enabling us to group data in a form that can be manipulated more easily as a unit. Chapter 10 deals with two useful data structures—dictionaries and sets. These enable us to solve certain kinds of problems more easily and conveniently than we can without them. This book is intended for anyone who is learning programming for the first time. The presentation is based on the fact that many students (though not all) have difficulties in learning programming. To overcome this, the book uses an approach which provides clear examples, detailed explanations of very basic concepts and numerous interesting problems (not just artificial exercises whose only purpose is to illustrate some language feature).
Download or read book Getting Started with Julia written by Ivo Balbaert and published by Packt Publishing Ltd. This book was released on 2015-02-26 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for you if you are a data scientist or working on any technical or scientific computation projects. The book assumes you have a basic working knowledge of high-level dynamic languages such as MATLAB, R, Python, or Ruby.
Download or read book Data Science with Julia written by Paul D. McNicholas and published by CRC Press. This book was released on 2019-01-02 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist."- Professor Charles Bouveyron, INRIA Chair in Data Science, Université Côte d’Azur, Nice, France Julia, an open-source programming language, was created to be as easy to use as languages such as R and Python while also as fast as C and Fortran. An accessible, intuitive, and highly efficient base language with speed that exceeds R and Python, makes Julia a formidable language for data science. Using well known data science methods that will motivate the reader, Data Science with Julia will get readers up to speed on key features of the Julia language and illustrate its facilities for data science and machine learning work. Features: Covers the core components of Julia as well as packages relevant to the input, manipulation and representation of data. Discusses several important topics in data science including supervised and unsupervised learning. Reviews data visualization using the Gadfly package, which was designed to emulate the very popular ggplot2 package in R. Readers will learn how to make many common plots and how to visualize model results. Presents how to optimize Julia code for performance. Will be an ideal source for people who already know R and want to learn how to use Julia (though no previous knowledge of R or any other programming language is required). The advantages of Julia for data science cannot be understated. Besides speed and ease of use, there are already over 1,900 packages available and Julia can interface (either directly or through packages) with libraries written in R, Python, Matlab, C, C++ or Fortran. The book is for senior undergraduates, beginning graduate students, or practicing data scientists who want to learn how to use Julia for data science. "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist." Professor Charles Bouveyron INRIA Chair in Data Science Université Côte d’Azur, Nice, France
Download or read book Julia 1 0 Programming Cookbook written by Bogumił Kamiński and published by Packt Publishing Ltd. This book was released on 2018-11-29 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the new features and widely used packages in Julia to solve complex computational problems in your statistical applications. Key FeaturesAddress the core problems of programming in Julia with the most popular packages for common tasksTackle issues while working with Databases and Parallel data processing with JuliaExplore advanced features such as metaprogramming, functional programming, and user defined typesBook Description Julia, with its dynamic nature and high-performance, provides comparatively minimal time for the development of computational models with easy-to-maintain computational code. This book will be your solution-based guide as it will take you through different programming aspects with Julia. Starting with the new features of Julia 1.0, each recipe addresses a specific problem, providing a solution and explaining how it works. You will work with the powerful Julia tools and data structures along with the most popular Julia packages. You will learn to create vectors, handle variables, and work with functions. You will be introduced to various recipes for numerical computing, distributed computing, and achieving high performance. You will see how to optimize data science programs with parallel computing and memory allocation. We will look into more advanced concepts such as metaprogramming and functional programming. Finally, you will learn how to tackle issues while working with databases and data processing, and will learn about on data science problems, data modeling, data analysis, data manipulation, parallel processing, and cloud computing with Julia. By the end of the book, you will have acquired the skills to work more effectively with your data What you will learnBoost your code’s performance using Julia’s unique featuresOrganize data in to fundamental types of collections: arrays and dictionariesOrganize data science processes within Julia and solve related problemsScale Julia computations with cloud computingWrite data to IO streams with Julia and handle web transferDefine your own immutable and mutable typesSpeed up the development process using metaprogrammingWho this book is for This book is for developers who would like to enhance their Julia programming skills and would like to get some quick solutions to their common programming problems. Basic Julia programming knowledge is assumed.
Download or read book Algorithms for Decision Making written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2022-08-16 with total page 701 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.
Download or read book Learning Julia written by Anshul Joshi and published by Packt Publishing Ltd. This book was released on 2017-11-24 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn Julia language for data science and data analytics About This Book Set up Julia's environment and start building simple programs Explore the technical aspects of Julia and its potential when it comes to speed and data processing Write efficient and high-quality code in Julia Who This Book Is For This book allows existing programmers, statisticians and data scientists to learn the Julia and take its advantage while building applications with complex numerical and scientific computations. Basic knowledge of mathematics is needed to understand the various methods that will be used or created in the book to exploit the capabilities for which Julia is made. What You Will Learn Understand Julia's ecosystem and create simple programs Master the type system and create your own types in Julia Understand Julia's type system, annotations, and conversions Define functions and understand meta-programming and multiple dispatch Create graphics and data visualizations using Julia Build programs capable of networking and parallel computation Develop real-world applications and use connections for RDBMS and NoSQL Learn to interact with other programming languages–C and Python—using Julia In Detail Julia is a highly appropriate language for scientific computing, but it comes with all the required capabilities of a general-purpose language. It allows us to achieve C/Fortran-like performance while maintaining the concise syntax of a scripting language such as Python. It is perfect for building high-performance and concurrent applications. From the basics of its syntax to learning built-in object types, this book covers it all. This book shows you how to write effective functions, reduce code redundancies, and improve code reuse. It will be helpful for new programmers who are starting out with Julia to explore its wide and ever-growing package ecosystem and also for experienced developers/statisticians/data scientists who want to add Julia to their skill-set. The book presents the fundamentals of programming in Julia and in-depth informative examples, using a step-by-step approach. You will be taken through concepts and examples such as doing simple mathematical operations, creating loops, metaprogramming, functions, collections, multiple dispatch, and so on. By the end of the book, you will be able to apply your skills in Julia to create and explore applications of any domain. Style and approach This book demonstrates the basics of Julia along with some data structures and testing tools that will give you enough material to get started with the language from an application standpoint.
Download or read book Hands On Julia Programming written by Sambit Kumar Dash and published by BPB Publications. This book was released on 2021-10-21 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build production-ready machine learning and NLP systems using functional programming, development platforms, and cloud deployment. KEY FEATURES ● In-depth explanation and code samples highlighting the features of the Julia language. ● Extensive coverage of the Julia development ecosystem, package management, DevOps environment integration, and performance management tools. ● Exposure to the most important Julia packages that aid in Data and Text Analytics and Deep Learning. DESCRIPTION The Julia Programming language enables data scientists and programmers to create prototypes without sacrificing performance. Nonetheless, skeptics question its readiness for production deployments as a new platform with a 1.0 release in 2018. This book removes these doubts and offers a comprehensive glimpse at the language's use throughout developing and deploying production-ready applications. The first part of the book teaches experienced programmers and scientists about the Julia language features in great detail. The second part consists of gaining hands-on experience with the development environment, debugging, programming guidelines, package management, and cloud deployment strategies. In the final section, readers are introduced to a variety of third-party packages available in the Julia ecosystem for Data Processing, Text Analytics, and developing Deep Learning models. This book provides an extensive overview of the programming language and broadens understanding of the Julia ecosystem. As a result, it assists programmers, scientists, and information architects in selecting Julia for their next production deployments. WHAT YOU WILL LEARN ● Get to know the complete fundamentals of Julia programming. ● Explore Julia development frameworks and how to work with them. ● Dig deeper into the concepts and applications of functional programming. ● Uncover the Julia infrastructure for development, testing, and deployment. ● Learn to practice Julia libraries and the Julia package ecosystem. ● Processing Data, Deep Learning, and Natural Language Processing with Julia. WHO THIS BOOK IS FOR This book is for Data Scientists and application developers who want to learn about Julia application development. No prior Julia knowledge is required but knowing the basics of programming helps understand the objectives of this book. TABLE OF CONTENTS 1. Getting Started 2. Data Types 3. Conditions, Control Flow, and Iterations 4. Functions and Methods 5. Collections 6. Arrays 7. Strings 8. Metaprogramming 9. Standard Libraries Module 2. The Development Environment 10. Programming Guidelines in Julia 11. Performance Management 12. IDE and Debugging 13. Package Management 14. Deployment Module 3. Packages in Julia 15. Data Transformations 16. Text Analytics 17. Deep Learning
Download or read book Julia High Performance written by Avik Sengupta and published by Packt Publishing Ltd. This book was released on 2019-06-10 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design and develop high-performance programs in Julia 1.0 Key FeaturesLearn the characteristics of high-performance Julia codeUse the power of the GPU to write efficient numerical codeSpeed up your computation with the help of newly introduced shared memory multi-threading in Julia 1.0Book Description Julia is a high-level, high-performance dynamic programming language for numerical computing. If you want to understand how to avoid bottlenecks and design your programs for the highest possible performance, then this book is for you. The book starts with how Julia uses type information to achieve its performance goals, and how to use multiple dispatches to help the compiler emit high-performance machine code. After that, you will learn how to analyze Julia programs and identify issues with time and memory consumption. We teach you how to use Julia's typing facilities accurately to write high-performance code and describe how the Julia compiler uses type information to create fast machine code. Moving ahead, you'll master design constraints and learn how to use the power of the GPU in your Julia code and compile Julia code directly to the GPU. Then, you'll learn how tasks and asynchronous IO help you create responsive programs and how to use shared memory multithreading in Julia. Toward the end, you will get a flavor of Julia's distributed computing capabilities and how to run Julia programs on a large distributed cluster. By the end of this book, you will have the ability to build large-scale, high-performance Julia applications, design systems with a focus on speed, and improve the performance of existing programs. What you will learnUnderstand how Julia code is transformed into machine codeMeasure the time and memory taken by Julia programs Create fast machine code using Julia's type information Define and call functions without compromising Julia's performance Accelerate your code via the GPUUse tasks and asynchronous IO for responsive programsRun Julia programs on large distributed clustersWho this book is for This book is for beginners and intermediate Julia programmers who are interested in high-performance technical programming. A basic knowledge of Julia programming is assumed.
Download or read book The Little Book of Julia Algorithms written by Ahan Sengupta and published by . This book was released on 2022-12 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Targeted at middle and high school programmers, this book aims to explain basic computer science concepts while teaching the Julia programming language. As a fast and productive high level language, Julia is ideal for beginner programmers. The learning curve for programming can be quite steep and this book aims to ease this transition by encouraging practise and gradually introducing more complex concepts. The book contains 50 programming challenges that encourages the reader to write their own programs. The solutions to all challenges are given at the end of the book. This book will make readers comfortable with using computers to solve any problems, and leave them well prepared for more significant programming in their maths, science or computer science courses at college. After finishing the exercises in this book, the reader should feel more familiar with: Loops and conditionals, Structuring code with functions, Reading and writing files, Installing and using packages, Sorting and searching, and Simple Statistics and Plotting. With a foreword by Jeff Bezanson, co-creator of the Julia programming language.