EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Beginning Anomaly Detection Using Python Based Deep Learning

Download or read book Beginning Anomaly Detection Using Python Based Deep Learning written by Suman Kalyan Adari and published by Apress. This book was released on 2023-12-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning. Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection. After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors. What You Will Learn Understand what anomaly detection is, why it it is important, and how it is applied Grasp the core concepts of machine learning. Master traditional machine learning approaches to anomaly detection using scikit-kearn. Understand deep learning in Python using Keras and PyTorch Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications Who This Book Is For Data scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection.

Book Beginning Anomaly Detection Using Python Based Deep Learning

Download or read book Beginning Anomaly Detection Using Python Based Deep Learning written by Sridhar Alla and published by Apress. This book was released on 2019-10-10 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Utilize this easy-to-follow beginner's guide to understand how deep learning can be applied to the task of anomaly detection. Using Keras and PyTorch in Python, the book focuses on how various deep learning models can be applied to semi-supervised and unsupervised anomaly detection tasks. This book begins with an explanation of what anomaly detection is, what it is used for, and its importance. After covering statistical and traditional machine learning methods for anomaly detection using Scikit-Learn in Python, the book then provides an introduction to deep learning with details on how to build and train a deep learning model in both Keras and PyTorch before shifting the focus to applications of the following deep learning models to anomaly detection: various types of Autoencoders, Restricted Boltzmann Machines, RNNs & LSTMs, and Temporal Convolutional Networks. The book explores unsupervised and semi-supervised anomaly detection along with the basics of time series-based anomaly detection. By the end of the book you will have a thorough understanding of the basic task of anomaly detection as well as an assortment of methods to approach anomaly detection, ranging from traditional methods to deep learning. Additionally, you are introduced to Scikit-Learn and are able to create deep learning models in Keras and PyTorch. What You Will LearnUnderstand what anomaly detection is and why it is important in today's world Become familiar with statistical and traditional machine learning approaches to anomaly detection using Scikit-Learn Know the basics of deep learning in Python using Keras and PyTorch Be aware of basic data science concepts for measuring a model's performance: understand what AUC is, what precision and recall mean, and more Apply deep learning to semi-supervised and unsupervised anomaly detection Who This Book Is For Data scientists and machine learning engineers interested in learning the basics of deep learning applications in anomaly detection

Book Python Deep Learning

    Book Details:
  • Author : Valentino Zocca
  • Publisher : Packt Publishing Ltd
  • Release : 2017-04-28
  • ISBN : 1786460661
  • Pages : 406 pages

Download or read book Python Deep Learning written by Valentino Zocca and published by Packt Publishing Ltd. This book was released on 2017-04-28 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take your machine learning skills to the next level by mastering Deep Learning concepts and algorithms using Python. About This Book Explore and create intelligent systems using cutting-edge deep learning techniques Implement deep learning algorithms and work with revolutionary libraries in Python Get real-world examples and easy-to-follow tutorials on Theano, TensorFlow, H2O and more Who This Book Is For This book is for Data Science practitioners as well as aspirants who have a basic foundational understanding of Machine Learning concepts and some programming experience with Python. A mathematical background with a conceptual understanding of calculus and statistics is also desired. What You Will Learn Get a practical deep dive into deep learning algorithms Explore deep learning further with Theano, Caffe, Keras, and TensorFlow Learn about two of the most powerful techniques at the core of many practical deep learning implementations: Auto-Encoders and Restricted Boltzmann Machines Dive into Deep Belief Nets and Deep Neural Networks Discover more deep learning algorithms with Dropout and Convolutional Neural Networks Get to know device strategies so you can use deep learning algorithms and libraries in the real world In Detail With an increasing interest in AI around the world, deep learning has attracted a great deal of public attention. Every day, deep learning algorithms are used broadly across different industries. The book will give you all the practical information available on the subject, including the best practices, using real-world use cases. You will learn to recognize and extract information to increase predictive accuracy and optimize results. Starting with a quick recap of important machine learning concepts, the book will delve straight into deep learning principles using Sci-kit learn. Moving ahead, you will learn to use the latest open source libraries such as Theano, Keras, Google's TensorFlow, and H20. Use this guide to uncover the difficulties of pattern recognition, scaling data with greater accuracy and discussing deep learning algorithms and techniques. Whether you want to dive deeper into Deep Learning, or want to investigate how to get more out of this powerful technology, you'll find everything inside. Style and approach Python Machine Learning by example follows practical hands on approach. It walks you through the key elements of Python and its powerful machine learning libraries with the help of real world projects.

Book Hands On Unsupervised Learning Using Python

Download or read book Hands On Unsupervised Learning Using Python written by Ankur A. Patel and published by "O'Reilly Media, Inc.". This book was released on 2019-02-21 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning Set up and manage machine learning projects end-to-end Build an anomaly detection system to catch credit card fraud Clusters users into distinct and homogeneous groups Perform semisupervised learning Develop movie recommender systems using restricted Boltzmann machines Generate synthetic images using generative adversarial networks

Book Practical Machine Learning  A New Look at Anomaly Detection

Download or read book Practical Machine Learning A New Look at Anomaly Detection written by Ted Dunning and published by "O'Reilly Media, Inc.". This book was released on 2014-07-21 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finding Data Anomalies You Didn't Know to Look For Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what “suspects” you’re looking for. This O’Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project. Use probabilistic models to predict what’s normal and contrast that to what you observe Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model Use historical data to discover anomalies in sporadic event streams, such as web traffic Learn how to use deviations in expected behavior to trigger fraud alerts

Book Anomaly Detection Principles and Algorithms

Download or read book Anomaly Detection Principles and Algorithms written by Kishan G. Mehrotra and published by Springer. This book was released on 2017-11-18 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a readable and elegant presentation of the principles of anomaly detection,providing an easy introduction for newcomers to the field. A large number of algorithms are succinctly described, along with a presentation of their strengths and weaknesses. The authors also cover algorithms that address different kinds of problems of interest with single and multiple time series data and multi-dimensional data. New ensemble anomaly detection algorithms are described, utilizing the benefits provided by diverse algorithms, each of which work well on some kinds of data. With advancements in technology and the extensive use of the internet as a medium for communications and commerce, there has been a tremendous increase in the threats faced by individuals and organizations from attackers and criminal entities. Variations in the observable behaviors of individuals (from others and from their own past behaviors) have been found to be useful in predicting potential problems of various kinds. Hence computer scientists and statisticians have been conducting research on automatically identifying anomalies in large datasets. This book will primarily target practitioners and researchers who are newcomers to the area of modern anomaly detection techniques. Advanced-level students in computer science will also find this book helpful with their studies.

Book Practical Machine Learning for Data Analysis Using Python

Download or read book Practical Machine Learning for Data Analysis Using Python written by Abdulhamit Subasi and published by Academic Press. This book was released on 2020-06-05 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features

Book The TensorFlow Workshop

    Book Details:
  • Author : Matthew Moocarme
  • Publisher : Packt Publishing Ltd
  • Release : 2021-12-15
  • ISBN : 1800200226
  • Pages : 601 pages

Download or read book The TensorFlow Workshop written by Matthew Moocarme and published by Packt Publishing Ltd. This book was released on 2021-12-15 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get started with TensorFlow fundamentals to build and train deep learning models with real-world data, practical exercises, and challenging activities Key FeaturesUnderstand the fundamentals of tensors, neural networks, and deep learningDiscover how to implement and fine-tune deep learning models for real-world datasetsBuild your experience and confidence with hands-on exercises and activitiesBook Description Getting to grips with tensors, deep learning, and neural networks can be intimidating and confusing for anyone, no matter their experience level. The breadth of information out there, often written at a very high level and aimed at advanced practitioners, can make getting started even more challenging. If this sounds familiar to you, The TensorFlow Workshop is here to help. Combining clear explanations, realistic examples, and plenty of hands-on practice, it'll quickly get you up and running. You'll start off with the basics – learning how to load data into TensorFlow, perform tensor operations, and utilize common optimizers and activation functions. As you progress, you'll experiment with different TensorFlow development tools, including TensorBoard, TensorFlow Hub, and Google Colab, before moving on to solve regression and classification problems with sequential models. Building on this solid foundation, you'll learn how to tune models and work with different types of neural network, getting hands-on with real-world deep learning applications such as text encoding, temperature forecasting, image augmentation, and audio processing. By the end of this deep learning book, you'll have the skills, knowledge, and confidence to tackle your own ambitious deep learning projects with TensorFlow. What you will learnGet to grips with TensorFlow's mathematical operationsPre-process a wide variety of tabular, sequential, and image dataUnderstand the purpose and usage of different deep learning layersPerform hyperparameter-tuning to prevent overfitting of training dataUse pre-trained models to speed up the development of learning modelsGenerate new data based on existing patterns using generative modelsWho this book is for This TensorFlow book is for anyone who wants to develop their understanding of deep learning and get started building neural networks with TensorFlow. Basic knowledge of Python programming and its libraries, as well as a general understanding of the fundamentals of data science and machine learning, will help you grasp the topics covered in this book more easily.

Book Deep Learning with Python

Download or read book Deep Learning with Python written by Francois Chollet and published by Simon and Schuster. This book was released on 2017-11-30 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance

Book Machine Learning for Time Series with Python

Download or read book Machine Learning for Time Series with Python written by Ben Auffarth and published by Packt Publishing Ltd. This book was released on 2021-10-29 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get better insights from time-series data and become proficient in model performance analysis Key FeaturesExplore popular and modern machine learning methods including the latest online and deep learning algorithmsLearn to increase the accuracy of your predictions by matching the right model with the right problemMaster time series via real-world case studies on operations management, digital marketing, finance, and healthcareBook Description The Python time-series ecosystem is huge and often quite hard to get a good grasp on, especially for time-series since there are so many new libraries and new models. This book aims to deepen your understanding of time series by providing a comprehensive overview of popular Python time-series packages and help you build better predictive systems. Machine Learning for Time-Series with Python starts by re-introducing the basics of time series and then builds your understanding of traditional autoregressive models as well as modern non-parametric models. By observing practical examples and the theory behind them, you will become confident with loading time-series datasets from any source, deep learning models like recurrent neural networks and causal convolutional network models, and gradient boosting with feature engineering. This book will also guide you in matching the right model to the right problem by explaining the theory behind several useful models. You'll also have a look at real-world case studies covering weather, traffic, biking, and stock market data. By the end of this book, you should feel at home with effectively analyzing and applying machine learning methods to time-series. What you will learnUnderstand the main classes of time series and learn how to detect outliers and patternsChoose the right method to solve time-series problemsCharacterize seasonal and correlation patterns through autocorrelation and statistical techniquesGet to grips with time-series data visualizationUnderstand classical time-series models like ARMA and ARIMAImplement deep learning models, like Gaussian processes, transformers, and state-of-the-art machine learning modelsBecome familiar with many libraries like Prophet, XGboost, and TensorFlowWho this book is for This book is ideal for data analysts, data scientists, and Python developers who want instantly useful and practical recipes to implement today, and a comprehensive reference book for tomorrow. Basic knowledge of the Python Programming language is a must, while familiarity with statistics will help you get the most out of this book.

Book Outlier Analysis

    Book Details:
  • Author : Charu C. Aggarwal
  • Publisher : Springer
  • Release : 2016-12-10
  • ISBN : 3319475789
  • Pages : 481 pages

Download or read book Outlier Analysis written by Charu C. Aggarwal and published by Springer. This book was released on 2016-12-10 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.

Book Artificial Intelligence Applications and Innovations

Download or read book Artificial Intelligence Applications and Innovations written by Ilias Maglogiannis and published by Springer Nature. This book was released on 2022-06-16 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of five International Workshops held as parallel events of the 18th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2022, virtually and in Hersonissos, Crete, Greece, in June 2022: the 11th Mining Humanistic Data Workshop (MHDW 2022); the 7th 5G-Putting Intelligence to the Network Edge Workshop (5G-PINE 2022); the 1st workshop on AI in Energy, Building and Micro-Grids (AIBMG 2022); the 1st Workshop/Special Session on Machine Learning and Big Data in Health Care (ML@HC 2022); and the 2nd Workshop on Artificial Intelligence in Biomedical Engineering and Informatics (AIBEI 2022). The 35 full papers presented at these workshops were carefully reviewed and selected from 74 submissions.

Book Practical Weak Supervision

Download or read book Practical Weak Supervision written by Wee Hyong Tok and published by "O'Reilly Media, Inc.". This book was released on 2021-09-30 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most data scientists and engineers today rely on quality labeled data to train machine learning models. But building a training set manually is time-consuming and expensive, leaving many companies with unfinished ML projects. There's a more practical approach. In this book, Wee Hyong Tok, Amit Bahree, and Senja Filipi show you how to create products using weakly supervised learning models. You'll learn how to build natural language processing and computer vision projects using weakly labeled datasets from Snorkel, a spin-off from the Stanford AI Lab. Because so many companies have pursued ML projects that never go beyond their labs, this book also provides a guide on how to ship the deep learning models you build. Get up to speed on the field of weak supervision, including ways to use it as part of the data science process Use Snorkel AI for weak supervision and data programming Get code examples for using Snorkel to label text and image datasets Use a weakly labeled dataset for text and image classification Learn practical considerations for using Snorkel with large datasets and using Spark clusters to scale labeling

Book Hands On Deep Learning Architectures with Python

Download or read book Hands On Deep Learning Architectures with Python written by Yuxi (Hayden) Liu and published by Packt Publishing Ltd. This book was released on 2019-04-30 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concepts, tools, and techniques to explore deep learning architectures and methodologies Key FeaturesExplore advanced deep learning architectures using various datasets and frameworksImplement deep architectures for neural network models such as CNN, RNN, GAN, and many moreDiscover design patterns and different challenges for various deep learning architecturesBook Description Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems. Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations. By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world. What you will learnImplement CNNs, RNNs, and other commonly used architectures with PythonExplore architectures such as VGGNet, AlexNet, and GoogLeNetBuild deep learning architectures for AI applications such as face and image recognition, fraud detection, and many moreUnderstand the architectures and applications of Boltzmann machines and autoencoders with concrete examples Master artificial intelligence and neural network concepts and apply them to your architectureUnderstand deep learning architectures for mobile and embedded systemsWho this book is for If you’re a data scientist, machine learning developer/engineer, or deep learning practitioner, or are curious about AI and want to upgrade your knowledge of various deep learning architectures, this book will appeal to you. You are expected to have some knowledge of statistics and machine learning algorithms to get the best out of this book

Book Bayesian Learning for Neural Networks

Download or read book Bayesian Learning for Neural Networks written by Radford M. Neal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.

Book Outlier Ensembles

    Book Details:
  • Author : Charu C. Aggarwal
  • Publisher : Springer
  • Release : 2017-04-06
  • ISBN : 3319547658
  • Pages : 288 pages

Download or read book Outlier Ensembles written by Charu C. Aggarwal and published by Springer. This book was released on 2017-04-06 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. In addition, it covers the techniques with which such methods can be made more effective. A formal classification of these methods is provided, and the circumstances in which they work well are examined. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification. The similarities and (subtle) differences in the ensemble techniques for the classification and outlier detection problems are explored. These subtle differences do impact the design of ensemble algorithms for the latter problem. This book can be used for courses in data mining and related curricula. Many illustrative examples and exercises are provided in order to facilitate classroom teaching. A familiarity is assumed to the outlier detection problem and also to generic problem of ensemble analysis in classification. This is because many of the ensemble methods discussed in this book are adaptations from their counterparts in the classification domain. Some techniques explained in this book, such as wagging, randomized feature weighting, and geometric subsampling, provide new insights that are not available elsewhere. Also included is an analysis of the performance of various types of base detectors and their relative effectiveness. The book is valuable for researchers and practitioners for leveraging ensemble methods into optimal algorithmic design.

Book Hands On Unsupervised Learning with Python

Download or read book Hands On Unsupervised Learning with Python written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2019-02-28 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the skill-sets required to implement various approaches to Machine Learning with Python Key FeaturesExplore unsupervised learning with clustering, autoencoders, restricted Boltzmann machines, and moreBuild your own neural network models using modern Python librariesPractical examples show you how to implement different machine learning and deep learning techniquesBook Description Unsupervised learning is about making use of raw, untagged data and applying learning algorithms to it to help a machine predict its outcome. With this book, you will explore the concept of unsupervised learning to cluster large sets of data and analyze them repeatedly until the desired outcome is found using Python. This book starts with the key differences between supervised, unsupervised, and semi-supervised learning. You will be introduced to the best-used libraries and frameworks from the Python ecosystem and address unsupervised learning in both the machine learning and deep learning domains. You will explore various algorithms, techniques that are used to implement unsupervised learning in real-world use cases. You will learn a variety of unsupervised learning approaches, including randomized optimization, clustering, feature selection and transformation, and information theory. You will get hands-on experience with how neural networks can be employed in unsupervised scenarios. You will also explore the steps involved in building and training a GAN in order to process images. By the end of this book, you will have learned the art of unsupervised learning for different real-world challenges. What you will learnUse cluster algorithms to identify and optimize natural groups of dataExplore advanced non-linear and hierarchical clustering in actionSoft label assignments for fuzzy c-means and Gaussian mixture modelsDetect anomalies through density estimationPerform principal component analysis using neural network modelsCreate unsupervised models using GANsWho this book is for This book is intended for statisticians, data scientists, machine learning developers, and deep learning practitioners who want to build smart applications by implementing key building block unsupervised learning, and master all the new techniques and algorithms offered in machine learning and deep learning using real-world examples. Some prior knowledge of machine learning concepts and statistics is desirable.