EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Bayesian Nonparametric Models for Name Disambiguation and Supervised Learning

Download or read book Bayesian Nonparametric Models for Name Disambiguation and Supervised Learning written by Andrew Mingbo Dai and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents new Bayesian nonparametric models and approaches for their development, for the problems of name disambiguation and supervised learning. Bayesian nonparametric methods form an increasingly popular approach for solving problems that demand a high amount of model flexibility. However, this field is relatively new, and there are many areas that need further investigation. Previous work on Bayesian nonparametrics has neither fully explored the problems of entity disambiguation and supervised learning nor the advantages of nested hierarchical models. Entity disambiguation is a widely encountered problem where different references need to be linked to a real underlying entity. This problem is often unsupervised as there is no previously known information about the entities. Further to this, effective use of Bayesian nonparametrics offer a new approach to tackling supervised problems, which are frequently encountered. The main original contribution of this thesis is a set of new structured Dirichlet process mixture models for name disambiguation and supervised learning that can also have a wide range of applications. These models use techniques from Bayesian statistics, including hierarchical and nested Dirichlet processes, generalised linear models, Markov chain Monte Carlo methods and optimisation techniques such as BFGS. The new models have tangible advantages over existing methods in the field as shown with experiments on real-world datasets including citation databases and classification and regression datasets. I develop the unsupervised author-topic space model for author disambiguation that uses free-text to perform disambiguation unlike traditional author disambiguation approaches. The model incorporates a name variant model that is based on a nonparametric Dirichlet language model. The model handles both novel unseen name variants and can model the unknown authors of the text of the documents. Through this, the model can disambiguate authors with no prior knowledge of the number of true authors in the dataset. In addition, it can do this when the authors have identical names. I use a model for nesting Dirichlet processes named the hybrid NDP-HDP. This model allows Dirichlet processes to be clustered together and adds an additional level of structure to the hierarchical Dirichlet process. I also develop a new hierarchical extension to the hybrid NDP-HDP. I develop this model into the grouped author-topic model for the entity disambiguation task. The grouped author-topic model uses clusters to model the co-occurrence of entities in documents, which can be interpreted as research groups. Since this model does not require entities to be linked to specific words in a document, it overcomes the problems of some existing author-topic models. The model incorporates a new method for modelling name variants, so that domain-specific name variant models can be used. Lastly, I develop extensions to supervised latent Dirichlet allocation, a type of supervised topic model. The keyword-supervised LDA model predicts document responses more accurately by modelling the effect of individual words and their contexts directly. The supervised HDP model has more model flexibility by using Bayesian nonparametrics for supervised learning. These models are evaluated on a number of classification and regression problems, and the results show that they outperform existing supervised topic modelling approaches. The models can also be extended to use similar information to the previous models, incorporating additional information such as entities and document titles to improve prediction.

Book Bayesian Nonparametrics via Neural Networks

Download or read book Bayesian Nonparametrics via Neural Networks written by Herbert K. H. Lee and published by SIAM. This book was released on 2004-01-01 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Nonparametrics via Neural Networks is the first book to focus on neural networks in the context of nonparametric regression and classification, working within the Bayesian paradigm. Its goal is to demystify neural networks, putting them firmly in a statistical context rather than treating them as a black box. This approach is in contrast to existing books, which tend to treat neural networks as a machine learning algorithm instead of a statistical model. Once this underlying statistical model is recognized, other standard statistical techniques can be applied to improve the model. The Bayesian approach allows better accounting for uncertainty. This book covers uncertainty in model choice and methods to deal with this issue, exploring a number of ideas from statistics and machine learning. A detailed discussion on the choice of prior and new noninformative priors is included, along with a substantial literature review. Written for statisticians using statistical terminology, Bayesian Nonparametrics via Neural Networks will lead statisticians to an increased understanding of the neural network model and its applicability to real-world problems.

Book Bayesian Nonparametric Methods for Non exchangeable Data

Download or read book Bayesian Nonparametric Methods for Non exchangeable Data written by Nicholas J. Foti and published by . This book was released on 2013 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametric methods have become increasingly popular in machine learning for their ability to allow the data to determine model complexity. In particular, Bayesian nonparametric versions of common latent variable models can learn as effective dimension of the latent space. Examples include mixture models, latent feature models and topic models, where the number of components, features, or topics need not be specified a priori. A drawback of many of these models is that they assume the observations are exchangeable, that is, any dependencies between observations are ignored. This thesis contributes general methods to incorporate covariates into Bayesian nonparametric models and inference algorithms to learn with these models. First, we will present a flexible class of dependent Bayesian nonparametric priors to induce covariate-dependence into a variety of latent variable models used in machine learning. The proposed framework has nice analytic properites and admits a simple inference algorithm. We show how the framework can be used to construct a covariate-dependent latent feature model and a time-varying topic model. Second, we describe the first general purpose inference algorithm for a large family of dependent mixture models. Using the idea of slice-sampling, the algorithm is truncation-free and fast, showing that inference can de done efficiently despite the added complexity that covariate-dependence entails. Last, we construct a Bayesian nonparametric framework to couple multiple latent variable models and apply the framework to learning from multiple views of data.

Book Nonparametric Bayesian Models for Machine Learning

Download or read book Nonparametric Bayesian Models for Machine Learning written by Romain Jean Thibaux and published by . This book was released on 2008 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bayesian Nonparametric Probabilistic Methods in Machine Learning

Download or read book Bayesian Nonparametric Probabilistic Methods in Machine Learning written by Justin C. Sahs and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Many aspects of modern science, business and engineering have become data-centric, relying on tools from Artificial Intelligence and Machine Learning. Practitioners and researchers in these fields need tools that can incorporate observed data into rich models of uncertainty to make discoveries and predictions. One area of study that provides such models is the field of Bayesian Nonparametrics. This dissertation is focused on furthering the development of this field. After reviewing the relevant background and surveying the field, we consider two areas of structured data: - We first consider relational data that takes the form of a 2-dimensional array--such as social network data. We introduce a novel nonparametric model that takes advantage of a representation theorem about arrays whose column and row order is unimportant. We then develop an inference algorithm for this model and evaluate it experimentally. - Second, we consider the classification of streaming data whose distribution evolves over time. We introduce a novel nonparametric model that finds and exploits a dynamic hierarchical structure underlying the data. We present an algorithm for inference in this model and show experimental results. We then extend our streaming model to handle the emergence of novel and recurrent classes, and evaluate the extended model experimentally.

Book Artificial Neural Networks and Machine Learning   ICANN 2011

Download or read book Artificial Neural Networks and Machine Learning ICANN 2011 written by Timo Honkela and published by Springer. This book was released on 2011-06-13 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set LNCS 6791 and LNCS 6792 constitutes the refereed proceedings of the 21th International Conference on Artificial Neural Networks, ICANN 2011, held in Espoo, Finland, in June 2011. The 106 revised full or poster papers presented were carefully reviewed and selected from numerous submissions. ICANN 2011 had two basic tracks: brain-inspired computing and machine learning research, with strong cross-disciplinary interactions and applications.

Book Bayesian Nonparametric Latent Variable Models

Download or read book Bayesian Nonparametric Latent Variable Models written by Patrick Dallaire and published by . This book was released on 2016 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the important problems in machine learning is determining the complexity of the model to learn. Too much complexity leads to overfitting, which finds structures that do not actually exist in the data, while too low complexity leads to underfitting, which means that the expressiveness of the model is insufficient to capture all the structures present in the data. For some probabilistic models, the complexity depends on the introduction of one or more latent variables whose role is to explain the generative process of the data. There are various approaches to identify the appropriate number of latent variables of a model. This thesis covers various Bayesian nonparametric methods capable of determining the number of latent variables to be used and their dimensionality. The popularization of Bayesian nonparametric statistics in the machine learning community is fairly recent. Their main attraction is the fact that they offer highly flexible models and their complexity scales appropriately with the amount of available data. In recent years, research on Bayesian nonparametric learning methods have focused on three main aspects: the construction of new models, the development of inference algorithms and new applications. This thesis presents our contributions to these three topics of research in the context of learning latent variables models. Firstly, we introduce the Pitman-Yor process mixture of Gaussians, a model for learning infinite mixtures of Gaussians. We also present an inference algorithm to discover the latent components of the model and we evaluate it on two practical robotics applications. Our results demonstrate that the proposed approach outperforms, both in performance and flexibility, the traditional learning approaches. Secondly, we propose the extended cascading Indian buffet process, a Bayesian nonparametric probability distribution on the space of directed acyclic graphs. In the context of Bayesian networks, this prior is used to identify the presence of latent variables and the network structure among them. A Markov Chain Monte Carlo inference algorithm is presented and evaluated on structure identification problems and as well as density estimation problems. Lastly, we propose the Indian chefs process, a model more general than the extended cascading Indian buffet process for learning graphs and orders. The advantage of the new model is that it accepts connections among observable variables and it takes into account the order of the variables. We also present a reversible jump Markov Chain Monte Carlo inference algorithm which jointly learns graphs and orders. Experiments are conducted on density estimation problems and testing independence hypotheses. This model is the first Bayesian nonparametric model capable of learning Bayesian learning networks with completely arbitrary graph structures.

Book Nonparametric Bayesian Methods for Supervised and Unsupervised Learning

Download or read book Nonparametric Bayesian Methods for Supervised and Unsupervised Learning written by Vikash Kumar Mansinghka and published by . This book was released on 2009 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: I introduce two nonparametric Bayesian methods for solving problems of supervised and unsupervised learning. The first method simultaneously learns causal networks and causal theories from data. For example, given synthetic co-occurrence data from a simple causal model for the medical domain, it can learn relationships like "having a flu causes coughing", while also learning that observable quantities can be usefully grouped into categories like diseases and symptoms, and that diseases tend to cause symptoms, not the other way around. The second method is an online algorithm for learning a prototype-based model for categorial concepts, and can be used to solve problems of multiclass classification with missing features. I apply it to problems of categorizing newsgroup posts and recognizing handwritten digits. These approaches were inspired by a striking capacity of human learning, which should also be a desideratum for any intelligent system: the ability to learn certain kinds of "simple" or "natural" structures very quickly, while still being able to learn arbitrary -- and arbitrarily complex - structures given enough data. In each case, I show how nonparametric Bayesian modeling and inference based on stochastic simulation give us some of the tools we need to achieve this goal.

Book A Nonparametric Bayesian Perspective for Machine Learning in Partially observed Settings

Download or read book A Nonparametric Bayesian Perspective for Machine Learning in Partially observed Settings written by Ferit Akova and published by . This book was released on 2013 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robustness and generalizability of supervised learning algorithms depend on the quality of the labeled data set in representing the real-life problem. In many real-world domains, however, we may not have full knowledge of the underlying data-generating mechanism, which may even have an evolving nature introducing new classes continually. This constitutes a partially-observed setting, where it would be impractical to obtain a labeled data set exhaustively defined by a fixed set of classes. Traditional supervised learning algorithms, assuming an exhaustive training library, would misclassify a future sample of an unobserved class with probability one, leading to an ill-defined classification problem. Our goal is to address situations where such assumption is violated by a non-exhaustive training library, which is a very realistic yet an overlooked issue in supervised learning. In this dissertation we pursue a new direction for supervised learning by defining self-adjusting models to relax the fixed model assumption imposed on classes and their distributions. We let the model adapt itself to the prospective data by dynamically adding new classes/components as data demand, which in turn gradually make the model more representative of the entire population. In this framework, we first employ suitably chosen nonparametric priors to model class distributions for observed as well as unobserved classes and then, utilize new inference methods to classify samples from observed classes and discover/model novel classes for those from unobserved classes. This thesis presents the initiating steps of an ongoing effort to address one of the most overlooked bottlenecks in supervised learning and indicates the potential for taking new perspectives in some of the most heavily studied areas of machine learning: novelty detection, online class discovery and semi-supervised learning.

Book Bayesian Nonparametric Data Analysis

Download or read book Bayesian Nonparametric Data Analysis written by Peter Müller and published by Springer. This book was released on 2015-06-17 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.

Book Nonparametric Bayesian Models for Unsupervised Learning

Download or read book Nonparametric Bayesian Models for Unsupervised Learning written by Pu Wang and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unsupervised learning is an important topic in machine learning. In particular, clustering is an unsupervised learning problem that arises in a variety of applications for data analysis and mining. Unfortunately, clustering is an ill-posed problem and, as such, a challenging one: no ground-truth that can be used to validate clustering results is available. Two issues arise as a consequence. Various clustering algorithms embed their own bias resulting from different optimization criteria. As a result, each algorithm may discover different patterns in a given dataset. The second issue concerns the setting of parameters. In clustering, parameter setting controls the characterization of individual clusters, and the total number of clusters in the data. Clustering ensembles have been proposed to address the issue of different biases induced by various algorithms. Clustering ensembles combine different clustering results, and can provide solutions that are robust against spurious elements in the data. Although clustering ensembles provide a significant advance, they do not address satisfactorily the model selection and the parameter tuning problem. Bayesian approaches have been applied to clustering to address the parameter tuning and model selection issues. Bayesian methods provide a principled way to address these problems by assuming prior distributions on model parameters. Prior distributions assign low probabilities to parameter values which are unlikely. Therefore they serve as regularizers for modeling parameters, and can help avoid over-fitting. In addition, the marginal likelihood is used by Bayesian approaches as the criterion for model selection. Although Bayesian methods provide a principled way to perform parameter tuning and model selection, the key question \How many clusters?" is still open. This is a fundamental question for model selection. A special kind of Bayesian methods, nonparametric Bayesian approaches, have been proposed to address this important model selection issue. Unlike parametric Bayesian models, for which the number of parameters is finite and fixed, nonparametric Bayesian models allow the number of parameters to grow with the number of observations. After observing the data, nonparametric Bayesian models t the data with finite dimensional parameters. An additional issue with clustering is high dimensionality. High-dimensional data pose a difficult challenge to the clustering process. A common scenario with high-dimensional data is that clusters may exist in different subspaces comprised of different combinations of features (dimensions). In other words, data points in a cluster may be similar to each other along a subset of dimensions, but not in all dimensions. People have proposed subspace clustering techniques, a.k.a. co-clustering or bi-clustering, to address the dimensionality issue (here, I use the term co-clustering). Like clustering, also co-clustering suffers from the ill-posed nature and the lack of ground-truth to validate the results. Although attempts have been made in the literature to address individually the major issues related to clustering, no previous work has addressed them jointly. In my dissertation I propose a unified framework that addresses all three issues at the same time. I designed a nonparametric Bayesian clustering ensemble (NBCE) approach, which assumes that multiple observed clustering results are generated from an unknown consensus clustering. The under- lying distribution is assumed to be a mixture distribution with a nonparametric Bayesian prior, i.e., a Dirichlet Process. The number of mixture components, a.k.a. the number of consensus clusters, is learned automatically. By combining the ensemble methodology and nonparametric Bayesian modeling, NBCE addresses both the ill-posed nature and the parameter setting/model selection issues of clustering. Furthermore, NBCE outperforms individual clustering methods, since it can escape local optima by combining multiple clustering results. I also designed a nonparametric Bayesian co-clustering ensemble (NBCCE) technique. NBCCE inherits the advantages of NBCE, and in addition it is effective with high dimensional data. As such, NBCCE provides a unified framework to address all the three aforementioned issues. NBCCE assumes that multiple observed co-clustering results are generated from an unknown consensus co-clustering. The underlying distribution is assumed to be a mixture with a nonparametric Bayesian prior. I developed two models to generate co-clusters in terms of row- and column- clusters. In one case row- and column-clusters are assumed to be independent, and NBCCE assumes two independent Dirichlet Process priors on the hidden consensus co-clustering, one for rows and one for columns. The second model captures the dependence between row- and column-clusters by assuming a Mondrian Process prior on the hidden consensus co-clustering. Combined with Mondrian priors, NBCCE provides more flexibility to fit the data. I have performed extensive evaluation on relational data and protein-molecule interaction data. The empirical evaluation demonstrates the effectiveness of NBCE and NBCCE and their advantages over traditional clustering and co-clustering methods.

Book Learning Bayesian Models with R

Download or read book Learning Bayesian Models with R written by Dr. Hari M. Koduvely and published by Packt Publishing Ltd. This book was released on 2015-10-28 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems About This Book Understand the principles of Bayesian Inference with less mathematical equations Learn state-of-the art Machine Learning methods Familiarize yourself with the recent advances in Deep Learning and Big Data frameworks with this step-by-step guide Who This Book Is For This book is for statisticians, analysts, and data scientists who want to build a Bayes-based system with R and implement it in their day-to-day models and projects. It is mainly intended for Data Scientists and Software Engineers who are involved in the development of Advanced Analytics applications. To understand this book, it would be useful if you have basic knowledge of probability theory and analytics and some familiarity with the programming language R. What You Will Learn Set up the R environment Create a classification model to predict and explore discrete variables Get acquainted with Probability Theory to analyze random events Build Linear Regression models Use Bayesian networks to infer the probability distribution of decision variables in a problem Model a problem using Bayesian Linear Regression approach with the R package BLR Use Bayesian Logistic Regression model to classify numerical data Perform Bayesian Inference on massively large data sets using the MapReduce programs in R and Cloud computing In Detail Bayesian Inference provides a unified framework to deal with all sorts of uncertainties when learning patterns form data using machine learning models and use it for predicting future observations. However, learning and implementing Bayesian models is not easy for data science practitioners due to the level of mathematical treatment involved. Also, applying Bayesian methods to real-world problems requires high computational resources. With the recent advances in computation and several open sources packages available in R, Bayesian modeling has become more feasible to use for practical applications today. Therefore, it would be advantageous for all data scientists and engineers to understand Bayesian methods and apply them in their projects to achieve better results. Learning Bayesian Models with R starts by giving you a comprehensive coverage of the Bayesian Machine Learning models and the R packages that implement them. It begins with an introduction to the fundamentals of probability theory and R programming for those who are new to the subject. Then the book covers some of the important machine learning methods, both supervised and unsupervised learning, implemented using Bayesian Inference and R. Every chapter begins with a theoretical description of the method explained in a very simple manner. Then, relevant R packages are discussed and some illustrations using data sets from the UCI Machine Learning repository are given. Each chapter ends with some simple exercises for you to get hands-on experience of the concepts and R packages discussed in the chapter. The last chapters are devoted to the latest development in the field, specifically Deep Learning, which uses a class of Neural Network models that are currently at the frontier of Artificial Intelligence. The book concludes with the application of Bayesian methods on Big Data using the Hadoop and Spark frameworks. Style and approach The book first gives you a theoretical description of the Bayesian models in simple language, followed by details of its implementation in the R package. Each chapter has illustrations for the use of Bayesian model and the corresponding R package, using data sets from the UCI Machine Learning repository. Each chapter also contains sufficient exercises for you to get more hands-on practice.

Book Bayesian Analysis in Natural Language Processing

Download or read book Bayesian Analysis in Natural Language Processing written by Shay Cohen and published by Morgan & Claypool Publishers. This book was released on 2019-04-09 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural language processing (NLP) went through a profound transformation in the mid-1980s when it shifted to make heavy use of corpora and data-driven techniques to analyze language. Since then, the use of statistical techniques in NLP has evolved in several ways. One such example of evolution took place in the late 1990s or early 2000s, when full-fledged Bayesian machinery was introduced to NLP. This Bayesian approach to NLP has come to accommodate various shortcomings in the frequentist approach and to enrich it, especially in the unsupervised setting, where statistical learning is done without target prediction examples. In this book, we cover the methods and algorithms that are needed to fluently read Bayesian learning papers in NLP and to do research in the area. These methods and algorithms are partially borrowed from both machine learning and statistics and are partially developed "in-house" in NLP. We cover inference techniques such as Markov chain Monte Carlo sampling and variational inference, Bayesian estimation, and nonparametric modeling. In response to rapid changes in the field, this second edition of the book includes a new chapter on representation learning and neural networks in the Bayesian context. We also cover fundamental concepts in Bayesian statistics such as prior distributions, conjugacy, and generative modeling. Finally, we review some of the fundamental modeling techniques in NLP, such as grammar modeling, neural networks and representation learning, and their use with Bayesian analysis.

Book Nonparametric Bayesian Modelling in Machine Learning

Download or read book Nonparametric Bayesian Modelling in Machine Learning written by Nada Habli and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals of Nonparametric Bayesian Inference

Download or read book Fundamentals of Nonparametric Bayesian Inference written by Subhashis Ghosal and published by . This book was released on 2017 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics.

Book Future Communication Technology and Engineering

Download or read book Future Communication Technology and Engineering written by Kennis Chan and published by CRC Press. This book was released on 2015-04-06 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Future Communication Technology and Engineering is a collection of papers presented at the 2014 International Conference on Future Communication Technology and Engineering (Shenzhen, China 16-17 November 2014). Covering a wide range of topics (communication systems, automation and control engineering, electrical engineering), the book includes the

Book Bayesian Tensor Decomposition for Signal Processing and Machine Learning

Download or read book Bayesian Tensor Decomposition for Signal Processing and Machine Learning written by Lei Cheng and published by Springer Nature. This book was released on 2023-02-16 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances of Bayesian inference in structured tensor decompositions. It explains how Bayesian modeling and inference lead to tuning-free tensor decomposition algorithms, which achieve state-of-the-art performances in many applications, including blind source separation; social network mining; image and video processing; array signal processing; and, wireless communications. The book begins with an introduction to the general topics of tensors and Bayesian theories. It then discusses probabilistic models of various structured tensor decompositions and their inference algorithms, with applications tailored for each tensor decomposition presented in the corresponding chapters. The book concludes by looking to the future, and areas where this research can be further developed. Bayesian Tensor Decomposition for Signal Processing and Machine Learning is suitable for postgraduates and researchers with interests in tensor data analytics and Bayesian methods.