Download or read book Frontiers of Statistical Decision Making and Bayesian Analysis written by Ming-Hui Chen and published by Springer Science & Business Media. This book was released on 2010-07-24 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.
Download or read book Modeling in Medical Decision Making written by Giovanni Parmigiani and published by John Wiley & Sons. This book was released on 2002-03 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes Bayesian inference, Monte Carlo simulation, utility theory and gives case studies of their use.
Download or read book Statistical Decision Theory and Bayesian Analysis written by James O. Berger and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.
Download or read book Bayesian Decision Analysis written by Jim Q. Smith and published by Cambridge University Press. This book was released on 2010-09-23 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian decision analysis supports principled decision making in complex domains. This textbook takes the reader from a formal analysis of simple decision problems to a careful analysis of the sometimes very complex and data rich structures confronted by practitioners. The book contains basic material on subjective probability theory and multi-attribute utility theory, event and decision trees, Bayesian networks, influence diagrams and causal Bayesian networks. The author demonstrates when and how the theory can be successfully applied to a given decision problem, how data can be sampled and expert judgements elicited to support this analysis, and when and how an effective Bayesian decision analysis can be implemented. Evolving from a third-year undergraduate course taught by the author over many years, all of the material in this book will be accessible to a student who has completed introductory courses in probability and mathematical statistics.
Download or read book An Introduction to Bayesian Inference and Decision written by Robert L. Winkler and published by Probabilistic Pub. This book was released on 2003-01-01 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: CD-ROM contains: Beta Distribution Generator (Excel file) ; Binomial Distribution Generator (Excel file) ; book exercises (MS Word files) ; book figures (Powerpoint files) ; TreeAge Data decision trees for some of the examples in the book ; Demonstration versions of TreeAge Data and Lumina Analytica.
Download or read book Bayesian Statistics for Beginners written by Therese M. Donovan and published by Oxford University Press, USA. This book was released on 2019 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an entry-level book on Bayesian statistics written in a casual, and conversational tone. The authors walk a reader through many sample problems step-by-step to provide those with little background in math or statistics with the vocabulary, notation, and understanding of the calculations used in many Bayesian problems.
Download or read book Risk Assessment and Decision Analysis with Bayesian Networks written by Norman Fenton and published by CRC Press. This book was released on 2012-11-07 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although many Bayesian Network (BN) applications are now in everyday use, BNs have not yet achieved mainstream penetration. Focusing on practical real-world problem solving and model building, as opposed to algorithms and theory, Risk Assessment and Decision Analysis with Bayesian Networks explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide powerful insights and better decision making. Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, and more Introduces all necessary mathematics, probability, and statistics as needed The book first establishes the basics of probability, risk, and building and using BN models, then goes into the detailed applications. The underlying BN algorithms appear in appendices rather than the main text since there is no need to understand them to build and use BN models. Keeping the body of the text free of intimidating mathematics, the book provides pragmatic advice about model building to ensure models are built efficiently. A dedicated website, www.BayesianRisk.com, contains executable versions of all of the models described, exercises and worked solutions for all chapters, PowerPoint slides, numerous other resources, and a free downloadable copy of the AgenaRisk software.
Download or read book Bayesian Inference written by Hanns Ludwig Harney and published by Springer. This book was released on 2016-10-18 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition offers a comprehensive introduction to the analysis of data using Bayes rule. It generalizes Gaussian error intervals to situations in which the data follow distributions other than Gaussian. This is particularly useful when the observed parameter is barely above the background or the histogram of multiparametric data contains many empty bins, so that the determination of the validity of a theory cannot be based on the chi-squared-criterion. In addition to the solutions of practical problems, this approach provides an epistemic insight: the logic of quantum mechanics is obtained as the logic of unbiased inference from counting data. New sections feature factorizing parameters, commuting parameters, observables in quantum mechanics, the art of fitting with coherent and with incoherent alternatives and fitting with multinomial distribution. Additional problems and examples help deepen the knowledge. Requiring no knowledge of quantum mechanics, the book is written on introductory level, with many examples and exercises, for advanced undergraduate and graduate students in the physical sciences, planning to, or working in, fields such as medical physics, nuclear physics, quantum mechanics, and chaos.
Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Download or read book Bayesian Statistics written by S. James Press and published by . This book was released on 1989-05-10 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to Bayesian statistics, with emphasis on interpretation of theory, and application of Bayesian ideas to practical problems. First part covers basic issues and principles, such as subjective probability, Bayesian inference and decision making, the likelihood principle, predictivism, and numerical methods of approximating posterior distributions, and includes a listing of Bayesian computer programs. Second part is devoted to models and applications, including univariate and multivariate regression models, the general linear model, Bayesian classification and discrimination, and a case study of how disputed authorship of some of the Federalist Papers was resolved via Bayesian analysis. Includes biographical material on Thomas Bayes, and a reproduction of Bayes's original essay. Contains exercises.
Download or read book Subjective and Objective Bayesian Statistics written by S. James Press and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ein Wiley-Klassiker über Bayes-Statistik, jetzt in durchgesehener und erweiterter Neuauflage! - Werk spiegelt die stürmische Entwicklung dieses Gebietes innerhalb der letzten Jahre wider - vollständige Darstellung der theoretischen Grundlagen - jetzt ergänzt durch unzählige Anwendungsbeispiele - die wichtigsten modernen Methoden (u. a. hierarchische Modellierung, linear-dynamische Modellierung, Metaanalyse, MCMC-Simulationen) - einzigartige Diskussion der Finetti-Transformierten und anderer Themen, über die man ansonsten nur spärliche Informationen findet - Lösungen zu den Übungsaufgaben sind enthalten
Download or read book Risk Assessment and Decision Analysis with Bayesian Networks written by Norman Fenton and published by CRC Press. This book was released on 2018-09-03 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of this book published, Bayesian networks have become even more important for applications in a vast array of fields. This second edition includes new material on influence diagrams, learning from data, value of information, cybersecurity, debunking bad statistics, and much more. Focusing on practical real-world problem-solving and model building, as opposed to algorithms and theory, it explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide more powerful insights and better decision making than is possible from purely data-driven solutions. Features Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, forensics, cybersecurity and more Introduces all necessary mathematics, probability, and statistics as needed Establishes the basics of probability, risk, and building and using Bayesian network models, before going into the detailed applications A dedicated website contains exercises and worked solutions for all chapters along with numerous other resources. The AgenaRisk software contains a model library with executable versions of all of the models in the book. Lecture slides are freely available to accredited academic teachers adopting the book on their course.
Download or read book Bayesian Statistics for Experimental Scientists written by Richard A. Chechile and published by MIT Press. This book was released on 2020-09-08 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the Bayesian approach to statistical inference that demonstrates its superiority to orthodox frequentist statistical analysis. This book offers an introduction to the Bayesian approach to statistical inference, with a focus on nonparametric and distribution-free methods. It covers not only well-developed methods for doing Bayesian statistics but also novel tools that enable Bayesian statistical analyses for cases that previously did not have a full Bayesian solution. The book's premise is that there are fundamental problems with orthodox frequentist statistical analyses that distort the scientific process. Side-by-side comparisons of Bayesian and frequentist methods illustrate the mismatch between the needs of experimental scientists in making inferences from data and the properties of the standard tools of classical statistics.
Download or read book Statistical Decision Theory written by James Berger and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision theory is generally taught in one of two very different ways. When of opti taught by theoretical statisticians, it tends to be presented as a set of mathematical techniques mality principles, together with a collection of various statistical procedures. When useful in establishing the optimality taught by applied decision theorists, it is usually a course in Bayesian analysis, showing how this one decision principle can be applied in various practical situations. The original goal I had in writing this book was to find some middle ground. I wanted a book which discussed the more theoretical ideas and techniques of decision theory, but in a manner that was constantly oriented towards solving statistical problems. In particular, it seemed crucial to include a discussion of when and why the various decision prin ciples should be used, and indeed why decision theory is needed at all. This original goal seemed indicated by my philosophical position at the time, which can best be described as basically neutral. I felt that no one approach to decision theory (or statistics) was clearly superior to the others, and so planned a rather low key and impartial presentation of the competing ideas. In the course of writing the book, however, I turned into a rabid Bayesian. There was no single cause for this conversion; just a gradual realization that things seemed to ultimately make sense only when looked at from the Bayesian viewpoint.
Download or read book Contemporary Bayesian Econometrics and Statistics written by John Geweke and published by John Wiley & Sons. This book was released on 2005-10-03 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.
Download or read book Analysis in Nutrition Research written by George Pounis and published by Academic Press. This book was released on 2018-10-19 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis in Nutrition Research: Principles of Statistical Methodology and Interpretation of the Results describes, in a comprehensive manner, the methodologies of quantitative analysis of data originating specifically from nutrition studies. The book summarizes various study designs in nutrition research, research hypotheses, the proper management of dietary data, and analytical methodologies, with a specific focus on how to interpret the results of any given study. In addition, it provides a comprehensive overview of the methodologies used in study design and the management and analysis of collected data, paying particular attention to all of the available, modern methodologies and techniques. Users will find an overview of the recent challenges and debates in the field of nutrition research that will define major research hypotheses for research in the next ten years. Nutrition scientists, researchers and undergraduate and postgraduate students will benefit from this thorough publication on the topic. - Provides a comprehensive presentation of the various study designs applied in nutrition research - Contains a parallel description of statistical methodologies used for each study design - Presents data management methodologies used specifically in nutrition research - Describes methodologies using both a theoretical and applied approach - Illustrates modern techniques in dietary pattern analysis - Summarizes current topics in the field of nutrition research that will define major research hypotheses for research in the next ten years
Download or read book Bayesian Statistics the Fun Way written by Will Kurt and published by No Starch Press. This book was released on 2019-07-09 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.