Download or read book Bayesian Analysis of Infectious Diseases written by Lyle D. Broemeling and published by CRC Press. This book was released on 2021-02-07 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Analysis of Infectious Diseases -COVID-19 and Beyond shows how the Bayesian approach can be used to analyze the evolutionary behavior of infectious diseases, including the coronavirus pandemic. The book describes the foundation of Bayesian statistics while explicating the biology and evolutionary behavior of infectious diseases, including viral and bacterial manifestations of the contagion. The book discusses the application of Markov Chains to contagious diseases, previews data analysis models, the epidemic threshold theorem, and basic properties of the infection process. Also described are the chain binomial model for the evolution of epidemics. Features: Represents the first book on infectious disease from a Bayesian perspective. Employs WinBUGS and R to generate observations that follow the course of contagious maladies. Includes discussion of the coronavirus pandemic as well as many examples from the past, including the flu epidemic of 1918-1919. Compares standard non-Bayesian and Bayesian inferences. Offers the R and WinBUGS code on at www.routledge.com/9780367633868
Download or read book Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases written by Dongmei Chen and published by John Wiley & Sons. This book was released on 2014-12-31 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features modern research and methodology on the spread of infectious diseases and showcases a broad range of multi-disciplinary and state-of-the-art techniques on geo-simulation, geo-visualization, remote sensing, metapopulation modeling, cloud computing, and pattern analysis Given the ongoing risk of infectious diseases worldwide, it is crucial to develop appropriate analysis methods, models, and tools to assess and predict the spread of disease and evaluate the risk. Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features mathematical and spatial modeling approaches that integrate applications from various fields such as geo-computation and simulation, spatial analytics, mathematics, statistics, epidemiology, and health policy. In addition, the book captures the latest advances in the use of geographic information system (GIS), global positioning system (GPS), and other location-based technologies in the spatial and temporal study of infectious diseases. Highlighting the current practices and methodology via various infectious disease studies, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features: Approaches to better use infectious disease data collected from various sources for analysis and modeling purposes Examples of disease spreading dynamics, including West Nile virus, bird flu, Lyme disease, pandemic influenza (H1N1), and schistosomiasis Modern techniques such as Smartphone use in spatio-temporal usage data, cloud computing-enabled cluster detection, and communicable disease geo-simulation based on human mobility An overview of different mathematical, statistical, spatial modeling, and geo-simulation techniques Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases is an excellent resource for researchers and scientists who use, manage, or analyze infectious disease data, need to learn various traditional and advanced analytical methods and modeling techniques, and become aware of different issues and challenges related to infectious disease modeling and simulation. The book is also a useful textbook and/or supplement for upper-undergraduate and graduate-level courses in bioinformatics, biostatistics, public health and policy, and epidemiology.
Download or read book Modeling Infectious Disease Parameters Based on Serological and Social Contact Data written by Niel Hens and published by Springer Science & Business Media. This book was released on 2012-10-24 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical epidemiology of infectious diseases usually involves describing the flow of individuals between mutually exclusive infection states. One of the key parameters describing the transition from the susceptible to the infected class is the hazard of infection, often referred to as the force of infection. The force of infection reflects the degree of contact with potential for transmission between infected and susceptible individuals. The mathematical relation between the force of infection and effective contact patterns is generally assumed to be subjected to the mass action principle, which yields the necessary information to estimate the basic reproduction number, another key parameter in infectious disease epidemiology. It is within this context that the Center for Statistics (CenStat, I-Biostat, Hasselt University) and the Centre for the Evaluation of Vaccination and the Centre for Health Economic Research and Modelling Infectious Diseases (CEV, CHERMID, Vaccine and Infectious Disease Institute, University of Antwerp) have collaborated over the past 15 years. This book demonstrates the past and current research activities of these institutes and can be considered to be a milestone in this collaboration. This book is focused on the application of modern statistical methods and models to estimate infectious disease parameters. We want to provide the readers with software guidance, such as R packages, and with data, as far as they can be made publicly available.
Download or read book Using R for Bayesian Spatial and Spatio Temporal Health Modeling written by Andrew B. Lawson and published by CRC Press. This book was released on 2021-04-28 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progressively more and more attention has been paid to how location affects health outcomes. The area of disease mapping focusses on these problems, and the Bayesian paradigm has a major role to play in the understanding of the complex interplay of context and individual predisposition in such studies of disease. Using R for Bayesian Spatial and Spatio-Temporal Health Modeling provides a major resource for those interested in applying Bayesian methodology in small area health data studies. Features: Review of R graphics relevant to spatial health data Overview of Bayesian methods and Bayesian hierarchical modeling as applied to spatial data Bayesian Computation and goodness-of-fit Review of basic Bayesian disease mapping models Spatio-temporal modeling with MCMC and INLA Special topics include multivariate models, survival analysis, missing data, measurement error, variable selection, individual event modeling, and infectious disease modeling Software for fitting models based on BRugs, Nimble, CARBayes and INLA Provides code relevant to fitting all examples throughout the book at a supplementary website The book fills a void in the literature and available software, providing a crucial link for students and professionals alike to engage in the analysis of spatial and spatio-temporal health data from a Bayesian perspective using R. The book emphasizes the use of MCMC via Nimble, BRugs, and CARBAyes, but also includes INLA for comparative purposes. In addition, a wide range of packages useful in the analysis of geo-referenced spatial data are employed and code is provided. It will likely become a key reference for researchers and students from biostatistics, epidemiology, public health, and environmental science.
Download or read book Advances In Bioinformatics And Its Applications Proceedings Of The International Conference written by Matthew He and published by World Scientific. This book was released on 2005-05-03 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume presents major developments and trends in bioinformatics and its applications. Comprising high-quality scientific research papers and state-of-the-art survey articles, the book has been divided into five main sections: Microarray Analysis and Regulatory Networks; Machine Learning and Statistical Analysis; Biomolecular Sequence and Structure Analysis; Symmetry in Sequences; and Signal Processing, Image Processing and Visualization. The results of these investigations help the practicing biologist in many ways: in identifying unknown connections, in narrowing down possibilities for a search, in suggesting new hypotheses, designing new experiments, validating existing models or proposing new ones. It is an essential source of reference for researchers and graduate students in bioinformatics, computer science, mathematics, statistics, and biological sciences based on select papers from the “The International Conference on Bioinformatics and Its Application” (ICBA), held December 16-19, 2004 in Fort Lauderdale, Florida, USA.
Download or read book Long Term Care Services in the United States 2013 Overview written by National Center for Health Statistics and published by Government Printing Office. This book was released on 2014-03 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Long-term care services include a broad range of services that meet the needs of frail older people and other adults with functional limitations. Long-Term care services provided by paid, regulated providers are a significant component of personal health care spending in the United States. This report presents descriptive results from the first wave of the National Study of Long-Term Care Providers (NSLTCP), which was conducted by the Centers for Disease Control and Preventions National Center for Health Statistics (NCHS). This report provides information on the supply, organizational characteristics, staffing, and services offered by providers of long-term care services; and the demographic, health, and functional composition of users of these services. Service users include residents of nursing homes and residential care communities, patients of home health agencies and hospices, and participants of adult day services centers.
Download or read book Modeling Infectious Diseases in Humans and Animals written by Matt J. Keeling and published by Princeton University Press. This book was released on 2011-09-19 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: For epidemiologists, evolutionary biologists, and health-care professionals, real-time and predictive modeling of infectious disease is of growing importance. This book provides a timely and comprehensive introduction to the modeling of infectious diseases in humans and animals, focusing on recent developments as well as more traditional approaches. Matt Keeling and Pejman Rohani move from modeling with simple differential equations to more recent, complex models, where spatial structure, seasonal "forcing," or stochasticity influence the dynamics, and where computer simulation needs to be used to generate theory. In each of the eight chapters, they deal with a specific modeling approach or set of techniques designed to capture a particular biological factor. They illustrate the methodology used with examples from recent research literature on human and infectious disease modeling, showing how such techniques can be used in practice. Diseases considered include BSE, foot-and-mouth, HIV, measles, rubella, smallpox, and West Nile virus, among others. Particular attention is given throughout the book to the development of practical models, useful both as predictive tools and as a means to understand fundamental epidemiological processes. To emphasize this approach, the last chapter is dedicated to modeling and understanding the control of diseases through vaccination, quarantine, or culling. Comprehensive, practical introduction to infectious disease modeling Builds from simple to complex predictive models Models and methodology fully supported by examples drawn from research literature Practical models aid students' understanding of fundamental epidemiological processes For many of the models presented, the authors provide accompanying programs written in Java, C, Fortran, and MATLAB In-depth treatment of role of modeling in understanding disease control
Download or read book Risk Assessment and Decision Analysis with Bayesian Networks written by Norman Fenton and published by CRC Press. This book was released on 2018-09-03 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of this book published, Bayesian networks have become even more important for applications in a vast array of fields. This second edition includes new material on influence diagrams, learning from data, value of information, cybersecurity, debunking bad statistics, and much more. Focusing on practical real-world problem-solving and model building, as opposed to algorithms and theory, it explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide more powerful insights and better decision making than is possible from purely data-driven solutions. Features Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, forensics, cybersecurity and more Introduces all necessary mathematics, probability, and statistics as needed Establishes the basics of probability, risk, and building and using Bayesian network models, before going into the detailed applications A dedicated website contains exercises and worked solutions for all chapters along with numerous other resources. The AgenaRisk software contains a model library with executable versions of all of the models in the book. Lecture slides are freely available to accredited academic teachers adopting the book on their course.
Download or read book Handbook of Infectious Disease Data Analysis written by Leonhard Held and published by CRC Press. This book was released on 2019-11-07 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen an explosion in new kinds of data on infectious diseases, including data on social contacts, whole genome sequences of pathogens, biomarkers for susceptibility to infection, serological panel data, and surveillance data. The Handbook of Infectious Disease Data Analysis provides an overview of many key statistical methods that have been developed in response to such new data streams and the associated ability to address key scientific and epidemiological questions. A unique feature of the Handbook is the wide range of topics covered. Key features Contributors include many leading researchers in the field Divided into four main sections: Basic concepts, Analysis of Outbreak Data, Analysis of Seroprevalence Data, Analysis of Surveillance Data Numerous case studies and examples throughout Provides both introductory material and key reference material
Download or read book Epidemics written by Ottar N. Bjørnstad and published by Springer. This book was released on 2018-10-30 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to be a practical study in infectious disease dynamics. The book offers an easy to follow implementation and analysis of mathematical epidemiology. The book focuses on recent case studies in order to explore various conceptual, mathematical, and statistical issues. The dynamics of infectious diseases shows a wide diversity of pattern. Some have locally persistent chains-of-transmission, others persist spatially in ‘consumer-resource metapopulations’. Some infections are prevalent among the young, some among the old and some are age-invariant. Temporally, some diseases have little variation in prevalence, some have predictable seasonal shifts and others exhibit violent epidemics that may be regular or irregular in their timing. Models and ‘models-with-data’ have proved invaluable for understanding and predicting this diversity, and thence help improve intervention and control. Using mathematical models to understand infectious disease dynamics has a very rich history in epidemiology. The field has seen broad expansions of theories as well as a surge in real-life application of mathematics to dynamics and control of infectious disease. The chapters of Epidemics: Models and Data using R have been organized in a reasonably logical way: Chapters 1-10 is a mix and match of models, data and statistics pertaining to local disease dynamics; Chapters 11-13 pertains to spatial and spatiotemporal dynamics; Chapter 14 highlights similarities between the dynamics of infectious disease and parasitoid-host dynamics; Finally, Chapters 15 and 16 overview additional statistical methodology useful in studies of infectious disease dynamics. This book can be used as a guide for working with data, models and ‘models-and-data’ to understand epidemics and infectious disease dynamics in space and time.
Download or read book Bayesian Evolutionary Analysis with BEAST written by Alexei J. Drummond and published by Cambridge University Press. This book was released on 2015-08-06 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: What are the models used in phylogenetic analysis and what exactly is involved in Bayesian evolutionary analysis using Markov chain Monte Carlo (MCMC) methods? How can you choose and apply these models, which parameterisations and priors make sense, and how can you diagnose Bayesian MCMC when things go wrong? These are just a few of the questions answered in this comprehensive overview of Bayesian approaches to phylogenetics. This practical guide: • Addresses the theoretical aspects of the field • Advises on how to prepare and perform phylogenetic analysis • Helps with interpreting analyses and visualisation of phylogenies • Describes the software architecture • Helps developing BEAST 2.2 extensions to allow these models to be extended further. With an accompanying website providing example files and tutorials (http://beast2.org/), this one-stop reference to applying the latest phylogenetic models in BEAST 2 will provide essential guidance for all users – from those using phylogenetic tools, to computational biologists and Bayesian statisticians.
Download or read book Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases written by Piero Manfredi and published by Springer Science & Business Media. This book was released on 2013-01-04 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume summarizes the state-of-the-art in the fast growing research area of modeling the influence of information-driven human behavior on the spread and control of infectious diseases. In particular, it features the two main and inter-related “core” topics: behavioral changes in response to global threats, for example, pandemic influenza, and the pseudo-rational opposition to vaccines. In order to make realistic predictions, modelers need to go beyond classical mathematical epidemiology to take these dynamic effects into account. With contributions from experts in this field, the book fills a void in the literature. It goes beyond classical texts, yet preserves the rationale of many of them by sticking to the underlying biology without compromising on scientific rigor. Epidemiologists, theoretical biologists, biophysicists, applied mathematicians, and PhD students will benefit from this book. However, it is also written for Public Health professionals interested in understanding models, and to advanced undergraduate students, since it only requires a working knowledge of mathematical epidemiology.
Download or read book Geospatial Health Data written by Paula Moraga and published by CRC Press. This book was released on 2019-11-26 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geospatial health data are essential to inform public health and policy. These data can be used to quantify disease burden, understand geographic and temporal patterns, identify risk factors, and measure inequalities. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny describes spatial and spatio-temporal statistical methods and visualization techniques to analyze georeferenced health data in R. The book covers the following topics: Manipulate and transform point, areal, and raster data, Bayesian hierarchical models for disease mapping using areal and geostatistical data, Fit and interpret spatial and spatio-temporal models with the Integrated Nested Laplace Approximations (INLA) and the Stochastic Partial Differential Equation (SPDE) approaches, Create interactive and static visualizations such as disease maps and time plots, Reproducible R Markdown reports, interactive dashboards, and Shiny web applications that facilitate the communication of insights to collaborators and policy makers. The book features fully reproducible examples of several disease and environmental applications using real-world data such as malaria in The Gambia, cancer in Scotland and USA, and air pollution in Spain. Examples in the book focus on health applications, but the approaches covered are also applicable to other fields that use georeferenced data including epidemiology, ecology, demography or criminology. The book provides clear descriptions of the R code for data importing, manipulation, modeling and visualization, as well as the interpretation of the results. This ensures contents are fully reproducible and accessible for students, researchers and practitioners.
Download or read book Infectious Disease Surveillance written by Nkuchia M. M'ikanatha and published by John Wiley & Sons. This book was released on 2013-03-11 with total page 1139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fully updated edition of Infectious Disease Surveillance is for frontline public health practitioners, epidemiologists, and clinical microbiologists who are engaged in communicable disease control. It is also a foundational text for trainees in public health, applied epidemiology, postgraduate medicine and nursing programs. The second edition portrays both the conceptual framework and practical aspects of infectious disease surveillance. It is a comprehensive resource designed to improve the tracking of infectious diseases and to serve as a starting point in the development of new surveillance systems. Infectious Disease Surveillance includes over 45 chapters from over 100 contributors, and topics organized into six sections based on major themes. Section One highlights the critical role surveillance plays in public health and it provides an overview of the current International Health Regulations (2005) in addition to successes and challenges in infectious disease eradication. Section Two describes surveillance systems based on logical program areas such as foodborne illnesses, vector-borne diseases, sexually transmitted diseases, viral hepatitis healthcare and transplantation associated infections. Attention is devoted to programs for monitoring unexplained deaths, agents of bioterrorism, mass gatherings, and disease associated with international travel. Sections Three and Four explore the uses of the Internet and wireless technologies to advance infectious disease surveillance in various settings with emphasis on best practices based on deployed systems. They also address molecular laboratory methods, and statistical and geospatial analysis, and evaluation of systems for early epidemic detection. Sections Five and Six discuss legal and ethical considerations, communication strategies and applied epidemiology-training programs. The rest of the chapters offer public-private partnerships, as well lessons from the 2009-2010 H1N1 influenza pandemic and future directions for infectious disease surveillance.
Download or read book Handbook of Approximate Bayesian Computation written by Scott A. Sisson and published by CRC Press. This book was released on 2018-09-03 with total page 679 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the world becomes increasingly complex, so do the statistical models required to analyse the challenging problems ahead. For the very first time in a single volume, the Handbook of Approximate Bayesian Computation (ABC) presents an extensive overview of the theory, practice and application of ABC methods. These simple, but powerful statistical techniques, take Bayesian statistics beyond the need to specify overly simplified models, to the setting where the model is defined only as a process that generates data. This process can be arbitrarily complex, to the point where standard Bayesian techniques based on working with tractable likelihood functions would not be viable. ABC methods finesse the problem of model complexity within the Bayesian framework by exploiting modern computational power, thereby permitting approximate Bayesian analyses of models that would otherwise be impossible to implement. The Handbook of ABC provides illuminating insight into the world of Bayesian modelling for intractable models for both experts and newcomers alike. It is an essential reference book for anyone interested in learning about and implementing ABC techniques to analyse complex models in the modern world.
Download or read book Markov Chain Monte Carlo in Practice written by W.R. Gilks and published by CRC Press. This book was released on 1995-12-01 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France,
Download or read book Applying Quantitative Bias Analysis to Epidemiologic Data written by Timothy L. Lash and published by Springer Science & Business Media. This book was released on 2011-04-14 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bias analysis quantifies the influence of systematic error on an epidemiology study’s estimate of association. The fundamental methods of bias analysis in epi- miology have been well described for decades, yet are seldom applied in published presentations of epidemiologic research. More recent advances in bias analysis, such as probabilistic bias analysis, appear even more rarely. We suspect that there are both supply-side and demand-side explanations for the scarcity of bias analysis. On the demand side, journal reviewers and editors seldom request that authors address systematic error aside from listing them as limitations of their particular study. This listing is often accompanied by explanations for why the limitations should not pose much concern. On the supply side, methods for bias analysis receive little attention in most epidemiology curriculums, are often scattered throughout textbooks or absent from them altogether, and cannot be implemented easily using standard statistical computing software. Our objective in this text is to reduce these supply-side barriers, with the hope that demand for quantitative bias analysis will follow.