EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Autonomous Powered Exoskeleton to Improve the Efficiency of Human Walking

Download or read book Autonomous Powered Exoskeleton to Improve the Efficiency of Human Walking written by Luke Matthewson Mooney and published by . This book was released on 2016 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: For over a century, technologists have strived to develop autonomous leg exoskeletons that reduce the metabolic energy consumed when humans walk and run, but such technologies have traditionally remained unachievable. In this thesis, I present the Augmentation Factor, a simple model that predicts the metabolic impact of lower limb exoskeletons during walking. The Augmentation Factor balances the benefits of positive exoskeletal mechanical power with the costs of mechanical power dissipation and added limb mass. These insights were used to design and develop an autonomous powered ankle exoskeleton. A lightweight electric actuator mounted on the lower-leg provides mechanical assistance to the ankle during powered plantar flexion. Use of the exoskeleton significantly reduced the metabolic cost of walking by 11 ± 4% (p = 0.019) compared to walking without the device. In a separate study, use of the exoskeleton reduced the metabolic cost of walking with a 23 kg weighted vest by 8 ± 3% (p = 0.012). A biomechanical study revealed that the powered ankle exoskeleton does not simply replace ankle function, but augments the biological ankle while assisting the knee and hip. Use of the powered ankle exoskeleton was shown to significantly reduced the mean positive power of the biological ankle by 0.033 ± 0.006 W/kg (p

Book Coordinated energy efficient walking assistance for paraplegic patients by using the exoskeleton walker system

Download or read book Coordinated energy efficient walking assistance for paraplegic patients by using the exoskeleton walker system written by Chen Yang and published by OAE Publishing Inc.. This book was released on 2024-03-19 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: Overground walking can be achieved for patients with gait impairments by using the lower limb exoskeleton robots. Since it is a challenge to keep balance for patients with insufficient upper body strength, a robotic walker is necessary to assist with the walking balance. However, since the walking pattern varies over time, controlling the robotic walker to follow the walking of the human-exoskeleton system in coordination is a critical issue. Inappropriate control strategy leads to the unnecessary energy cost of the human-exoskeleton-walker (HEW) system and also results in the bad coordination between the human-exoskeleton system and the robotic walker. In this paper, we proposed a Coordinated Energy-Efficient Control (CEEC) approach for the HEW system, which is based on the extremum seeking control algorithm and the coordinated motion planning strategy. First, the extremum seeking control algorithm is used to find the optimal supporting force of the support joint in real time to maximize the energy efficiency of the human-exoskeleton system. Second, the appropriate reference joint angles for wheels of the robotic walker can be generated by the coordinated motion planning strategy, causing the good coordination between the human-exoskeleton system and the robotic walker. The proposed approach has been tested on the HEW simulation model, and the experimental results indicate that the coordinated energy-efficient walking can be achieved with the proposed approach, which is increased by 60.16% compared to the conventional passive robotic walker.

Book Advances in Mechanism and Machine Science

Download or read book Advances in Mechanism and Machine Science written by Tadeusz Uhl and published by Springer. This book was released on 2019-06-13 with total page 4248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the proceedings of the 15th IFToMM World Congress, which was held in Krakow, Poland, from June 30 to July 4, 2019. Having been organized every four years since 1965, the Congress represents the world’s largest scientific event on mechanism and machine science (MMS). The contributions cover an extremely diverse range of topics, including biomechanical engineering, computational kinematics, design methodologies, dynamics of machinery, multibody dynamics, gearing and transmissions, history of MMS, linkage and mechanical controls, robotics and mechatronics, micro-mechanisms, reliability of machines and mechanisms, rotor dynamics, standardization of terminology, sustainable energy systems, transportation machinery, tribology and vibration. Selected by means of a rigorous international peer-review process, they highlight numerous exciting advances and ideas that will spur novel research directions and foster new multidisciplinary collaborations.

Book Wearable Robots

Download or read book Wearable Robots written by José L. Pons and published by John Wiley & Sons. This book was released on 2008-04-15 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wearable robot is a mechatronic system that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. Teleoperation and power amplification were the first applications, but after recent technological advances the range of application fields has widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control. Logical in structure and original in its global orientation, this volume gives a full overview of wearable robotics, providing the reader with a complete understanding of the key applications and technologies suitable for its development. The main topics are demonstrated through two detailed case studies; one on a lower limb active orthosis for a human leg, and one on a wearable robot that suppresses upper limb tremor. These examples highlight the difficulties and potentialities in this area of technology, illustrating how design decisions should be made based on these. As well as discussing the cognitive interaction between human and robot, this comprehensive text also covers: the mechanics of the wearable robot and it’s biomechanical interaction with the user, including state-of-the-art technologies that enable sensory and motor interaction between human (biological) and wearable artificial (mechatronic) systems; the basis for bioinspiration and biomimetism, general rules for the development of biologically-inspired designs, and how these could serve recursively as biological models to explain biological systems; the study on the development of networks for wearable robotics. Wearable Robotics: Biomechatronic Exoskeletons will appeal to lecturers, senior undergraduate students, postgraduates and other researchers of medical, electrical and bio engineering who are interested in the area of assistive robotics. Active system developers in this sector of the engineering industry will also find it an informative and welcome resource.

Book Powered Prostheses

Download or read book Powered Prostheses written by Houman Dallali and published by Academic Press. This book was released on 2020-04-17 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Powered Prostheses: Design, Control, and Clinical Applications presents the state-of-the-art in design, control and application of assistive technologies used in rehabilitation, including powered prostheses used in lower and upper extremity amputees and orthosis used in the rehabilitation of various joint disorders. The progress made in this field over the last decade is so vast that any new researcher in this field will have to spend years digesting the main achievements and challenges that remain. This book provides a comprehensive vision of advances, along with the challenges that remain on the path to the development of true bionic technology. Describes the latest assistive technologies that can help individuals deal with joint pain or limb loss Presents a tangible and intuitive description of scientific achievements made Highlights the existing technologies and devices that are available and used by amputees or patients with mobility limitations Suggests solutions and new results that can further enhance assistive technologies

Book Energy Recycling and Management for Lower Limb Exoskeleton

Download or read book Energy Recycling and Management for Lower Limb Exoskeleton written by Hao Lee and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lower Limb Exoskeleton, a wearable robot that is designed to provide lower limb assistance to users, has been rapidly developed in the previous decade. The goal of these robots is to replace human labor with robots while still having humans involved. However, while these robot suits provide sufficient assistance to the users, the efficiency of the robot is often overseen. Thus, restrict the exoskeleton's operating time or required it to connect to an external power supply. However, there is plenty of energy wasted in human motions. In this study, we target "loaded bipedal walking" as the primary motion to assist. In chapter 2, we applied trajectory optimization on different mechanical designs for lower-limb exoskeletons. It is commonly known that humans tend to use more energy to walk compared to other limb-based locomotion animals. This higher energy usage is due to "heel strikes" and "negative work" during human gait. Passive walkers elevate this phenomenon by utilizing elastic joints that absorb/reuse some of the negative work. The objective of this study is to absorb energy at one phase of the gait cycle, store it, and then release it at a later phase through the use of a lower limb exoskeleton. Knee geometry is one important factor in energy efficiency during gait. Animals with reversed knees compared to humans (backward knee), such as ostriches, exhibit improved energy efficiency. As part of this study, new energy optimization strategies were developed utilizing collision-based ground reaction forces and a discrete lagrangian. The minimal cost of transport (CoT) gait patterns were calculated with both forward-knee and backward-knee human-exoskeleton models. Simulation results show that wearing a backward-knee exoskeleton can reduce the CoT by 15% of while carrying external loads ranging from 20 to 60 kg. In addition, when the exoskeleton utilized energy recycling, the CoT was shown to be further reduced to 35%. These simulation results suggested that the optimal design for an exoskeleton aimed at utilizing energy recycling principles should incorporate backward-knee configurations much like those found in energy-efficient biped/quadruped animals. In fact, since the potential energy sources (heel strikes, negative work) and the main energy consumer (ankle push-off) occurs in the opposite legs, the ideal actuators for the exoskeleton need to be able to recycle, store, and transfer energy between different legs. To satisfy the actuator's requirements from chapter 2, in chapter 3 we choose pneumatic actuators as the actuator for our exoskeleton. Pneumatic actuators are a popular choice for wearable robotics due to their high force-to-weight ratio and natural compliance, which allows them to absorb and reuse wasted energy during movement. However, traditional pneumatic control is energy inefficient and difficult to precisely control due to nonlinear dynamics, latency, and the challenge of quantifying mechanical properties. To address these issues, In chapter 3, we developed a wearable pneumatic actuator with energy recycling capabilities and applied the sparse identification of nonlinear dynamics (SINDy) algorithm to generate a nonlinear delayed differential model from simple pressure measurements. Using only basic knowledge of thermal dynamics, SINDy was able to train models of solenoid valve-based pneumatic systems with a training accuracy of 90.58% and a test accuracy of 86.44%. The generated model, when integrated with model predictive control (MPC), resulted in a 5% error in pressure control. By using MPC for human assistive impedance control, the actuator was able to output the desired force profile and recycle around 88% of the energy used in negative work. These results demonstrate an energy-efficient and easily calibrated actuation scheme for designing assistive devices such as exoskeletons and orthoses. In chapter 4, we presented Pneumatic Exoskeleton with Reversible Knee (PERK). It utilizes the pneumatic actuators we developed in chapter 3 and the control strategies we concluded in chapter 2. Three clinical trials were done on three different test subjects. The results showed despite different walking patterns across different test subjects, there is less potential energy change during the swing phase of walking, potentially reducing the energy loss during the heel strike. In addition, during the double support phase, there is less energy consumption in the pneumatic system while configuring it as backward-knee, indicating it is easier or more intuitive for the user to have the exoskeleton recycling the dissipated energy with the backward-knee mechanism.

Book Modeling Human Dynamics for Powered Exoskeleton Control

Download or read book Modeling Human Dynamics for Powered Exoskeleton Control written by Andrew James John Smith and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Lower extremity powered exoskeletons (LEPE) are powered orthoses that enable persons with spinal cord injury (SCI) to ambulate independently. Since locomotor therapy must be specific and resemble natural gait patterns, to promote motor recovery, current LEPE control architectures may be inappropriate since they typically use able-bodied, pre-recorded reference position and force data, at normal walking speeds, to define exoskeleton motion and predict torque assistance. This thesis explored two aspects: a) able-bodied walking dynamics between 0.2 m/s and the person's self-paced speed to provide a biomimetic basis for LEPE control and b) musculoskeletal modelling of LEPE-human dynamics. For walking dynamics, appropriate regression equations were developed for stride, kinematic, and kinetic parameters. These equations can be used by LEPE designers when constructing angular trajectories and forces for LEPE control at any given speed. An inflection point at 0.5 m/s was identified for temporal stride parameters; therefore, different walking strategies should be considered for walking above and below this point. The full body musculoskeletal model (Anybody) of persons with SCI using the ARKE LEPE incorporated all external contact forces and inertial properties (exoskeleton and person) and was driven using real LEPE SCI user kinematics and kinetics. For the lower extremity, large dorsiflexion range of motion, large device anterior tilt, incomplete knee extension, and uncontrolled center of pressure forward progression lifted the heel during stance. This triggered step termination before trajectory tracking at the knee and hip was complete, thereby reducing hip extension, increasing knee flexion through stance, increasing knee and hip support moments, and increasing thigh and shank strap reaction forces. This also shortened effective participant limb length, further shortening step-length and LEPE walking speed. For the upper-limbs, LEPE users walked with more anterior trunk tilt and twice the shoulder flexion angle, compared with persons with incomplete SCI. This increased forces and moments at the crutch, shoulder, and elbow. Crutch floor contact periods were 30-40% longer, resulting in upper-extremity joint impulses 5 to 12 times greater than previously reported. Improved step-completion and upright posture would reduce support loads on the crutches and upper-limbs, and would further improve LEPE-human lower limb interaction forces. Improved upright posture and LEPE-human interaction forces would enhance mobility and quality of movement for people with SCI.

Book Wearable Exoskeleton Systems

Download or read book Wearable Exoskeleton Systems written by Shaoping Bai and published by Control, Robotics and Sensors. This book was released on 2018 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wearable exoskeletons are electro-mechanical systems designed to assist, augment, or enhance motion and mobility in a variety of human motion applications and scenarios. The applications, ranging from providing power supplementation to assist the wearers to situations where human motion is resisted for exercising applications, cover a wide range of domains such as medical devices for patient rehabilitation training recovering from trauma, movement aids for disabled persons, personal care robots for providing daily living assistance, and reduction of physical burden in industrial and military applications. The development of effective and affordable wearable exoskeletons poses several design, control and modelling challenges to researchers and manufacturers. Novel technologies are therefore being developed in adaptive motion controllers, human-robot interaction control, biological sensors and actuators, materials and structures, etc. In this book, the editors and authors report recent advances and technology breakthroughs in exoskeleton developments. It will be of interest to engineers and researchers in academia and industry as well as manufacturing companies interested in developing new markets in wearable exoskeleton robotics.

Book Development and Testing of an Unpowered Ankle Exoskeleton for Walking Assist

Download or read book Development and Testing of an Unpowered Ankle Exoskeleton for Walking Assist written by Justin Leclair and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Conflict in the 21st Century

    Book Details:
  • Author : Nicholas Michael Sambaluk
  • Publisher : Bloomsbury Publishing USA
  • Release : 2019-08-08
  • ISBN : 1440860017
  • Pages : 365 pages

Download or read book Conflict in the 21st Century written by Nicholas Michael Sambaluk and published by Bloomsbury Publishing USA. This book was released on 2019-08-08 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference work examines how sophisticated cyber-attacks and innovative use of social media have changed conflict in the digital realm, while new military technologies such as drones and robotic weaponry continue to have an impact on modern warfare. Cyber warfare, social media, and the latest military weapons are transforming the character of modern conflicts. This book explains how, through overview essays written by an award-winning author of military history and technology topics; in addition to more than 200 entries dealing with specific examples of digital and physical technologies, categorized by their relationship to cyber warfare, social media, and physical technology areas. Individually, these technologies are having a profound impact on modern conflicts; cumulatively, they are dynamically transforming the character of conflicts in the modern world. The book begins with a comprehensive overview essay on cyber warfare and a large section of A–Z reference entries related to this topic. The same detailed coverage is given to both social media and technology as they relate to conflict in the 21st century. Each of the three sections also includes an expansive bibliography that serves as a gateway for further research on these topics. The book ends with a detailed chronology that helps readers place all the key events in these areas.

Book Locomotor Training

    Book Details:
  • Author : Susan J. Harkema
  • Publisher :
  • Release : 2011
  • ISBN : 0195342089
  • Pages : 200 pages

Download or read book Locomotor Training written by Susan J. Harkema and published by . This book was released on 2011 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physical rehabilitation for walking recovery after spinal cord injury is undergoing a paradigm shift. Therapy historically has focused on compensation for sensorimotor deficits after SCI using wheelchairs and bracing to achieve mobility. With locomotor training, the aim is to promote recovery via activation of the neuromuscular system below the level of the lesion. What basic scientists have shown us as the potential of the nervous system for plasticity, to learn, even after injury is being translated into a rehabilitation strategy by taking advantage of the intrinsic biology of the central nervous system. While spinal cord injury from basic and clinical perspectives was the gateway for developing locomotor training, its application has been extended to other populations with neurologic dysfunction resulting in loss of walking or walking disability.

Book Bioinspired Legged Locomotion

Download or read book Bioinspired Legged Locomotion written by Maziar Ahmad Sharbafi and published by Butterworth-Heinemann. This book was released on 2017-11-21 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. Presents state-of-the-art control approaches with biological relevance Provides a thorough understanding of the principles of organization of biological locomotion Teaches the organization of complex systems based on low-dimensional motion concepts/control Acts as a guideline reference for future robots/assistive devices with legged architecture Includes a selective bibliography on the most relevant published articles

Book Wearable Robotics

    Book Details:
  • Author : Jacob Rosen
  • Publisher : Academic Press
  • Release : 2019-11-16
  • ISBN : 0128146605
  • Pages : 551 pages

Download or read book Wearable Robotics written by Jacob Rosen and published by Academic Press. This book was released on 2019-11-16 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wearable Robotics: Systems and Applications provides a comprehensive overview of the entire field of wearable robotics, including active orthotics (exoskeleton) and active prosthetics for the upper and lower limb and full body. In its two major sections, wearable robotics systems are described from both engineering perspectives and their application in medicine and industry. Systems and applications at various levels of the development cycle are presented, including those that are still under active research and development, systems that are under preliminary or full clinical trials, and those in commercialized products. This book is a great resource for anyone working in this field, including researchers, industry professionals and those who want to use it as a teaching mechanism. Provides a comprehensive overview of the entire field, with both engineering and medical perspectives Helps readers quickly and efficiently design and develop wearable robotics for healthcare applications

Book Adaptive Mobile Robotics

Download or read book Adaptive Mobile Robotics written by Abul K. M. Azad and published by World Scientific. This book was released on 2012 with total page 904 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides state-of-the-art scientific and engineering research findings and developments in the area of mobile robotics and associated support technologies. The book contains peer reviewed articles presented at the CLAWAR 2012 conference. Robots are no longer confined to industrial and manufacturing environments. A great deal of interest is invested in the use of robots outside the factory environment. The CLAWAR conference series, established as a high profile international event, acts as a platform for dissemination of research and development findings and supports such a trend to address the current interest in mobile robotics to meet the needs of mankind in various sectors of the society. These include personal care, public health, services in the domestic, public and industrial environments. The editors of the book have extensive research experience and publications in the area of robotics in general and in mobile robotics specifically, and their experience is reflected in editing the contents of the book.

Book Force Control Theory and Method of Human Load Carrying Exoskeleton Suit

Download or read book Force Control Theory and Method of Human Load Carrying Exoskeleton Suit written by Zhiyong Yang and published by Springer. This book was released on 2017-04-06 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on the latest advances in concepts and further development of principal component analysis (PCA), discussing in detail a number of open problems related to dimensional reduction techniques and their extensions. It brings together research findings, previously scattered throughout many scientific journal papers worldwide, and presents them in a methodologically unified form. Offering vital insights into the subject matter in self-contained chapters that balance the theory and concrete applications, and focusing on open problems, it is essential reading for all researchers and practitioners with an interest in PCA

Book Mechanism Design for Robotics

Download or read book Mechanism Design for Robotics written by Marco Ceccarelli and published by MDPI. This book was released on 2019-06-21 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: MEDER 2018, the IFToMM International Symposium on Mechanism Design for Robotics, was the fourth event in a series that was started in 2010 as a specific conference activity on mechanisms for robots. The aim of the MEDER Symposium is to bring researchers, industry professionals, and students together from a broad range of disciplines dealing with mechanisms for robots, in an intimate, collegial, and stimulating environment. In the 2018 MEDER event, we received significant attention regarding this initiative, as can be seen by the fact that the Proceedings contain contributions by authors from all around the world. The Proceedings of the MEDER 2018 Symposium have been published within the Springer book series on MMS, and the book contains 52 papers that have been selected after review for oral presentation. These papers cover several aspects of the wide field of robotics dealing with mechanism aspects in theory, design, numerical evaluations, and applications. This Special Issue of Robotics (https://www.mdpi.com/journal/robotics/special_issues/MDR) has been obtained as a result of a second review process and selection, but all the papers that have been accepted for MEDER 2018 are of very good quality with interesting contents that are suitable for journal publication, and the selection process has been difficult.

Book Paraplegia

    Book Details:
  • Author : José Juan Antonio Ibarra Arias
  • Publisher : BoD – Books on Demand
  • Release : 2021-05-12
  • ISBN : 1789855411
  • Pages : 216 pages

Download or read book Paraplegia written by José Juan Antonio Ibarra Arias and published by BoD – Books on Demand. This book was released on 2021-05-12 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade, diverse research areas have developed novel approaches to overcome dysfunctions after a spinal cord injury (SCI). Even though motor restoration attracts the most clinical attention, sensory, autonomic, and mental health are also aspects fundamental to improving the quality of life of SCI patients. Over four sections of therapeutic, rehabilitation, and technological approaches, this book examines preclinical and clinical studies using mesenchymal stem cells and pharmacological or electrical stimulation strategies. Chapters also address the impact of paraplegia and associated loss of autonomic functions, including bowel and sexual dysfunction, as well as the convergence of new technologies aimed at providing postural support and enhancing mobility.