EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Automatic Generation of Detailed Kinetic Models for Complex Chemical Systems

Download or read book Automatic Generation of Detailed Kinetic Models for Complex Chemical Systems written by Fariba Seyedzadeh Khanshan and published by . This book was released on 2016 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed chemical kinetic mechanisms represent molecular interactions that occur when chemical bonds are broken and reformed into new chemical compounds. Many natural and industrial processes such as combustion of hydrocarbons, biomass conversion into re- newable fuels, and synthesis of halogenated-hydrocarbon through halogenation reactions, include reaction network with hundred of species and thousands of reactions. Recently, the potential of such processes is leading to rapid industrial expansion and facing some technical drawbacks. Among various tools, detailed kinetic modeling is a reliable way to improve the scientific understanding of such systems and therefore optimize process conditions for desired production plans. Detailed chemical kinetic modeling is sensitive to the system chemistry, and sometimes too complex to model by hand. For example, utilizing predictive theoretical models by hand for biomass thermal conversion, which in- clude a wide variety of heavy cyclic oxygenated molecules, alcohols, aldehydes, ketones, ethers, esters, etc., is tedious. It is preferable to teach our chemistry knowledge to computers, and generate detailed chemical models automatically. To generate comprehensive detailed models, an extensive set of reaction classes, which would define how species can react with each other, should be implemented in mechanism generators. In this thesis, Reaction Mechanism Genera- tor (RMG), an open-source software, has been used to build detailed kinetic models for complex chemical systems. This thesis presents several significant contributions in the area of predictive automatic kinetic mechanism generation for biofuels thermal conversion and reactions of many chlo- rinated hydrocarbons. The first section of this thesis describes significant contributions in detailed kinetic modeling of bio-oil gasification for syngas production using RMG. The major challenge in modeling bio-oil gasification is the presence of a wide range of cyclic oxygenated species and several progress has been made in RMG to improve the automated chemical modeling of this process. RMG-built models were evaluated by comparison to available published data and to improve the understanding of such detailed models, dif- ferent types of analysis such as sensitivity analysis were performed. The second section of this thesis presents a theoretical study of the gas-phase unimolec- ular thermal decomposition of heterocyclic compounds via single step exo and endo ring opening reaction classes. Quantum chemical calculations were performed for a smaller set of reactants belonging to the endo and exo reaction classes and data were used to inspect the 'rate calculation rules' method. To study the e↵ect of the direct ring open- ing reactions in the automated detailed kinetic model generation, the bio-oil gasification mechanism, from Chapter 1, was updated after updating RMGs kinetic database with these new single step ring opening reaction classes and associated rate rules. The third section of this thesis provides significant contributions toward facilitating the automatic generation of predictive detailed kinetic models for 1,1,2,3- tetrachloropropene (1230xa) production and other hydrocarbon chlorination processes. In order to enable RMG to model chlorinated hydrocarbon conversions, the chlorine (Cl) chemistry has been added into the the Python version of the software. A model has been generated in RMG for 1230xa production with known associated thermodynamic and kinetic parameters. For model evaluation, reaction flux analysis and sensitivity analysis were performed to reveal the important reaction channels in the RMG-built model and several improvements to thermodynamic estimates were discussed. The ability to automatically generate these models for such complex chemical systems demonstrates the predictive capability of detailed chemical modeling. The impact of such models significantly improves the scientific understanding of two industrial chemical processes, bio-oil gasification and chlorination.

Book Enabling Automatic Generation of Accurate Kinetic Models for Complicated Chemical Systems

Download or read book Enabling Automatic Generation of Accurate Kinetic Models for Complicated Chemical Systems written by Kehang Han and published by . This book was released on 2018 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decades have seen much progress in predictive kinetic modeling. Reaction mechanisms have shown increased predictive capability, providing key insights into chemical transformations under conditions of interest. Coupled and integrated in multiscale-multiphysics models, reaction mechanisms help elucidate physical phenomena that are driven by chemical kinetics and are recognized as a necessary tool for chemical selection, reactor design and process optimization. These past kinetic modeling achievements have opened new opportunities for novel scientific applications in chemical kinetics community and encouraged kinetic modelers to study even more complex chemical systems. As one can expect, the system complexity significantly increases modeling cost in both reaction mechanism construction and simulation. Over the years we have seen formulation of various lumping strategies. Despite simplicity, the lumping strategy introduces an intrinsic error where the lumps contain molecules with very different reactivities. Frequently, oversimplified models using the kinetic parameters fitted from a very limited set of pilot experiments, resulting in poor accuracy in extrapolation. This thesis focuses on automated detailed kinetic modeling strategy using Reaction Mechanism Generator (RMG). RMG-generated models more faithfully represent the chemistry so they have superior extrapolation potential. But as system complexity increases, several computational limitations prevent RMG from converging. This thesis has made several contributions: reducing memory usage, boosting algorithm scalability, improving thermochemistry estimation accuracy, which eventually expand RMG's modeling capability toward large complex systems. These contributions are available to the kinetics community through the RMG software package. To demonstrate the improved modeling capability of RMG, the thesis also includes a large chemical application: heavy oil thermal decomposition under geological conditions via a C18 model compound, phenyldodecane. As an extension of RMG, the thesis also explores a promising alternative to detailed kinetic modeling when dealing with extremely large chemical systems: fragment-based kinetic modeling, which generates a reaction network in fragment space rather than molecule space. The thesis shows via a case study that the new method creates a much smaller reaction network but with similar prediction accuracy on feedstock conversion and products' molecular weight distribution compared to its counterpart model generated by RMG.

Book Generating Detailed Kinetic Models for Large Pyrolysis Systems

Download or read book Generating Detailed Kinetic Models for Large Pyrolysis Systems written by A. Mark Payne and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed kinetic models have been able to accurately the predict the behavior of many complex chemical systems. The benefits of such models is numerous, ranging from being able to predict system behavior under conditions not amenable to experiments to the fact that the mere process of generating such models often leads to the discovery of new reaction pathways. Despite this utility, to date these models have mostly been applied to smaller systems of 10 heavy atoms or less. This is because as the size of the molecules grows, the number of possible isomers and thus reactive pairs grows combinatorially. Furthermore, refining these models often involves high-accuracy quantum chemistry calculations that are expensive for larger species. If these challenges can be overcome, though, generating detailed kinetic models for larger systems aims to provide valuable insights into complex systems, such as the pyrolysis of heavy oil or biomass. In this work, we show that advances in automatic mechanism generation software, quantum chemistry methods, and ever increasing amounts of computational power have made the prospect of generating detailed models for larger systems possible. We were able to generate a detailed kinetic model for the pyrolysis a 3-component hydrocarbon mixture with the largest species containing 18 heavy atoms. Despite the size of the molecules, the generated model was able to predict experimental data for this system. We also discuss aspects of refining these models with quantum chemistry calculations, specifically calculating species thermochemistry. We showed that many of the methods for correcting these calculations, including bond-additivity corrections and isodesmic reaction approaches yield similar results, despite some claims to the contrary. Finally, we collected experimental data necessary to validate detailed kinetic models for the pyrolysis of kerogen. As part of this work, we discussed the challenges of collecting such data, and showed the suitability of modern methods and instrumentation towards this task. With this, it is likely that detailed kinetic models will be increasingly used to study larger systems, though this work will likely involve fully-detailed model compound studies in tandem with approaches to reduce the combinatorial complexity of large systems without much loss in accuracy.

Book Mathematical Modelling of Gas Phase Complex Reaction Systems  Pyrolysis and Combustion

Download or read book Mathematical Modelling of Gas Phase Complex Reaction Systems Pyrolysis and Combustion written by and published by Elsevier. This book was released on 2019-06-21 with total page 1034 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Volume 45, gives an overview of the different steps involved in the development and application of detailed kinetic mechanisms, mainly relating to pyrolysis and combustion processes. The book is divided into two parts that cover the chemistry and kinetic models and then the numerical and statistical methods. It offers a comprehensive coverage of the theory and tools needed, along with the steps necessary for practical and industrial applications. Details thermochemical properties and "ab initio" calculations of elementary reaction rates Details kinetic mechanisms of pyrolysis and combustion processes Explains experimental data for improving reaction models and for kinetic mechanisms assessment Describes surrogate fuels and molecular reconstruction of hydrocarbon liquid mixtures Describes pollutant formation in combustion systems Solves and validates the kinetic mechanisms using numerical and statistical methods Outlines optimal design of industrial burners and optimization and dynamic control of pyrolysis furnaces Outlines large eddy simulation of turbulent reacting flows

Book Automatic Reaction Mechanism Generation

Download or read book Automatic Reaction Mechanism Generation written by Connie Wu Gao and published by . This book was released on 2016 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Growing awareness of climate change and the risks associated with our society's dependence on fossil fuels has motivated global initiatives to develop economically viable, renewable energy sources. However, the transportation sector remains a major hurdle. Although electric vehicles are becoming more mainstream, the transportation sector is expected to continue relying heavily on combustion engines, particularly in the freight and airline industries. Therefore, research efforts to develop cleaner combustion must continue. This includes the development of more efficient combustion engines, identification of compatible alternative fuels, and the streamlining of existing petroleum resources. These dynamic systems have complex chemistry and are often difficult and expensive to probe experimentally, making detailed chemical kinetic modeling an attractive option for simulating and predicting macroscopic observables such as ignition delay or CO2 concentrations. This thesis presents several methods and applications towards high fidelity predictive modeling using Reaction Mechanism Generator (RMG), an open source software package which automatically constructs kinetic mechanisms. Several sources contribute to model error during automatic mechanism generation, including incomplete or incorrect handling of chemistry, poor estimation of thermodynamic and kinetics parameters, and uncertainty propagation. First, an overview of RMG is presented along with algorithmic changes for handling incomplete or incorrect chemistry. Completeness of chemistry is often limited by CPU speed and memory in the combinational problem of generating reactions for large molecules. A method for filtering reactions is presented for efficiently and accurately building models for larger systems. An extensible species representation was also implemented based on chemical graph theory, allowing chemistry to be extended to lone pairs, charges, and variable valencies. Several chemistries are explored in this thesis through modeling three combustion related processes. Ketone and cyclic ether chemistry are explored in the study of diisoproyl ketone and cineole, biofuel candidates produced by fungi in the decomposition of cellulosic biomass. Detailed kinetic modeling in conjunction with engine experiments and metabolic engineering form a collaborative feedback loop that efficiently screens biofuel candidates for use in novel engine technologies. Next, the challenge of modeling constrained cyclic geometries is tackled in generating a combustion model of JP-10, a synthetic jet fuel used in propulsion technologies. The model is validated against experimental and literature data and succeeds in capturing key product distributions, including aromatic compounds, which are precursors to polyaromatic hydrocarbons (PAHs) and soot. Finally, oil-to-gas cracking processes under geological conditions are studied through modeling the low temperature pyrolysis of the heavy oil analog phenyldodecane in the presence of diethyldisulfide. This system is used to gather mechanistic insight on the observation that sulfur-rich kerogens have accelerated oil-to-gas decomposition, a topic relevant to petroleum reservoir modeling. The model shows that free radical timescales matter in low temperature systems where alkylaromatics are relatively stable. Local and global uncertainty propagation methods are used to analyze error in automatically generated kinetic models. A framework for local uncertainty analysis was implemented using Cantera as a backend. Global uncertainty analysis was implemented using adaptive Smolyak pscudospcctral approximations to efficiently compute and construct polynomial chaos expansions (PCE) to approximate the dependence of outputs on a subset of uncertain inputs. Both local and global methods provide similar qualitative insights towards identifying the most influential input parameters in a model. The analysis shows that correlated uncertainties based on kinetics rate rules and group additivity estimates of thermochemistry drastically reduce a model's degrees of freedom and can have a large impact on model outputs. These results highlight the necessity of uncertainty analysis in the mechanism generation workflow. This thesis demonstrates that predictive chemical kinetics can aid in the mechanistic understanding of complex chemical processes and contributes new methods for refining and building high fidelity models in the automatic mechanism generation workflow. These contributions are available to the kinetics community through the RMG software package.

Book Modeling of Chemical Reactions

Download or read book Modeling of Chemical Reactions written by R.W. Carr and published by Elsevier. This book was released on 2007-09-04 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling of Chemical Reactions covers detailed chemical kinetics models for chemical reactions. Including a comprehensive treatment of pressure dependent reactions, which are frequently not incorporated into detailed chemical kinetic models, and the use of modern computational quantum chemistry, which has recently become an extraordinarily useful component of the reaction kinetics toolkit. It is intended both for those who need to model complex chemical reaction processes but have little background in the area, and those who are already have experience and would benefit from having a wide range of useful material gathered in one volume. The range of subject matter is wider than that found in many previous treatments of this subject. The technical level of the material is also quite wide, so that non-experts can gain a grasp of fundamentals, and experts also can find the book useful. A solid introduction to kinetics Material on computational quantum chemistry, an important new area for kinetics Contains a chapter on construction of mechanisms, an approach only found in this book

Book Automated Reaction Mechanism Generation

Download or read book Automated Reaction Mechanism Generation written by Gregory Russell Magoon and published by . This book was released on 2012 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical kinetic modeling plays an important role in the study of reactive chemical systems. Thus, an automated means of constructing chemical kinetic models forms a useful tool in the engineering and science surrounding such systems. This document describes work to further develop one such tool, known as RMG (Reaction Mechanism Generator). Focus is placed on improving the accuracy of parameter estimation in the mechanism generation process and expanding the scope of applicability of the tool. In particular, effort has targeted the generation and use of explicit three-dimensional molecular structures for chemical species considered during reaction mechanism generation. This work has resulted in the generation of a software system integrated with RMG that can automatically generate and use such structures with quantum chemistry or force field codes to obtain more reliable thermochemistry estimates for cyclic structures without human intervention. Ultimately, the result of these updates is improved usefulness and reliability of the software system as a predictive tool. An application of the tool to the high temperature oxidation of JP-10, a jet fuel often used in military applications, is described. Using the newly refined RMG system, a detailed chemical kinetic model was constructed for this system. The resulting model represents a significant improvement upon existing work for JP- 10 oxidation by capturing detailed chemistry for this system. Simulations with this model have been found to produce results for ignition delay and product distribution that compare favorably with experimental results. The successful application of the refined RMG software system to this system demonstrates the practical utility of these updates.

Book Automatic Generation and Analysis of Chemical Kinetic Mechanisms

Download or read book Automatic Generation and Analysis of Chemical Kinetic Mechanisms written by Matthew Sean Johnson and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many important processes in the world are controlled by chemical kinetics, from the combustion of fuels in engines, the production of polymers, the electrochemistry of batteries to biological processes. However, many if not most overall chemical processes do not occur in a single step reaction between reactants and products and can involve hundreds of different elementary reactions and intermediates. In many cases how well we can resolve and parametrize these elementary reactions and intermediates control ability to predict the behavior of the associated process. These systems of species reactions and their associated parameters are usually referred to as detailed kinetic mechanisms. Creating detailed kinetic mechanisms, however, requires us to determine both what reactions can happen in a given system and how fast they occur. This can be incredibly tedious an challenging to do by hand so it is often more practical to use automatic mechanism generators such as the Reaction Mechanism Generator (RMG) software. RMG allows us to build a workflow for generating and refining these mechanisms where we run RMG to generate a mechanism analyze the mechanism to determine important parameters and improve those parameters based on quantum chemistry calculations, experiments and literature, integrate the new data into RMG's estimators and rerun RMG to generate a new mechanism. This thesis presents a number of improvements to different aspects of this workflow and applications of this workflow. New faster and more advanced techniques and software are presented for analyzing chemical kinetic mechanisms. Improvements are presented for RMG's algorithm for selecting species and reactions to include in the mechanism. Improved techniques for generating, refining and computing phenomenological rate coefficients for pressure dependent networks are also presented. Additionally presented, is the RMG-database that manages estimation with RMG and a new machine learning based algorithm for estimating the rate coefficients of reactions. Lastly, an application of this workflow to generate a mechanism for the combustion and pyrolysis of methyl propyl ether and the extension and application of RMG to model the solid electrolyte interphase in lithium batteries are presented.

Book Modeling Chemical Systems using Cellular Automata

Download or read book Modeling Chemical Systems using Cellular Automata written by Lemont B. Kier and published by Springer Science & Business Media. This book was released on 2006-02-23 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling Chemical Systems using Cellular Automata provides a practical introduction to an exciting modeling paradigm for complex systems. The book first discusses the nature of scientific inquiry using models and simulations, and then describes the nature of cellular automata models. It then gives detailed descriptions, with examples and exercises, of how cellular automata models can be used in the study of a wide variety chemical, physical, and biochemical phenomena. Topics covered include models of water itself, solution phenomena, solution interactions with stationary systems, first- and second-order kinetic phenomena, enzyme kinetics, vapor-liquid equilibrium, and atomic and molecular excited-state kinetics. The student experiences these systems through hands-on examples and guided studies. This book is the first of its kind: a textbook and a laboratory manual about cellular automata modeling of common systems in chemistry. The book is designed to be used as a text in undergraduate courses dealing with complex systems and/or as a computational supplement to laboratory courses taught at the undergraduate level. The book includes: - Compact descriptions of a large variety of physical and chemical phenomena - Illustrative examples of simulations, with exercises for further study - An instructor's manual for use of the program The book will be of great value in undergraduate courses in chemistry, physics, biology, applied mathematics, and bioinformatics, and as a supplement for laboratory courses in introductory chemistry, organic chemistry, physical chemistry, medicinal chemistry, chemical engineering and other courses dealing with statistical and dynamic systems. It allows the exploration of a wide range of dynamic phenomena, many of which are not normally accessible within conventional laboratory settings due to limitations of time, cost, and experimental equipment. The book is both a textbook on applied Cellular Automata and a lab manual for chemistry (physics, engineering) courses with lab activity. It would supplement other lab work and be an additonal book the students would use in the course. The authors have assessed the emerging need for this kind of activity in science labs because of the cost of the practical activitites and the frequent failure of some exercises leading to lost didactic value of some experiments. This book is pioneering an alternative that will grow in use. There are no course directors who would use Cellular Automata exclusively. The authors see an emerging interest in this kind of work in courses that contain lab exercises. One such course is the graduate course that Lemont Kier gives in Life Sciences about complexity. He uses many examples and studies from Cellular Automata in the latter part of this course.

Book Stochastic Chemical Kinetics

Download or read book Stochastic Chemical Kinetics written by Péter Érdi and published by Springer. This book was released on 2014-05-06 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.

Book Mathematical Models of Chemical Reactions

Download or read book Mathematical Models of Chemical Reactions written by Péter Érdi and published by Manchester University Press. This book was released on 1989 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analysis of Kinetic Reaction Mechanisms

Download or read book Analysis of Kinetic Reaction Mechanisms written by Tamás Turányi and published by Springer. This book was released on 2014-12-29 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical processes in many fields of science and technology, including combustion, atmospheric chemistry, environmental modelling, process engineering, and systems biology, can be described by detailed reaction mechanisms consisting of numerous reaction steps. This book describes methods for the analysis of reaction mechanisms that are applicable in all these fields. Topics addressed include: how sensitivity and uncertainty analyses allow the calculation of the overall uncertainty of simulation results and the identification of the most important input parameters, the ways in which mechanisms can be reduced without losing important kinetic and dynamic detail, and the application of reduced models for more accurate engineering optimizations. This monograph is invaluable for researchers and engineers dealing with detailed reaction mechanisms, but is also useful for graduate students of related courses in chemistry, mechanical engineering, energy and environmental science and biology.

Book Software Tools for Molecule based Kinetic Modeling of Complex Systems

Download or read book Software Tools for Molecule based Kinetic Modeling of Complex Systems written by Zhen Hou and published by . This book was released on 2011 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling complex process chemistries with complex feedstocks involves several aspects: composition modeling of the complex feedstock, reaction modeling of the complex chemistry, and structure property correlations to provide feed and product property estimation. This thesis was developed to automate these modeling techniques and to provide an integrated approach for combing these modeling aspects into a continuous package. The first contribution of this thesis is the development of an automated composition modeling tool called the composition model editor (CME). CME uses a statistical hybrid approach to describe a complex feedstock in terms of a set of structural attributes expressed by probability density functions (PDF). Through optimizing a limited set of attribute PDF parameters, CME can obtain a molecular composition array (MCA) for a feedstock based on limited analytical information. The second contribution of this thesis is the development of a series of automated techniques that are useful for reaction modeling. Firstly, an attribute reaction modeling (ARM) approach is developed for complex process chemistries. ARM can condense a kinetic model by allowing the number of ODEs to be far less than the number of species for a complex system, while maintaining the full molecular detail of the model. Secondly, reaction family and LFER concepts are used to control the number of kinetic parameters for a complex model. Thirdly, the ability to impose LHHW rate law allows for heterogeneous systems involving with catalysts. Last but not least, various process configurations are addressed to satisfy the kinetic modeling for complex process chemistries. The third and final contribution of this thesis is the creation of a structure correlation module used to provide data support for kinetic modeling as well as composition modeling. Group contribution methods and the quantum chemistry package are applied to estimate thermodynamic properties. A supplemental database is developed to manage property data in a high efficient way. The above contributions were then successfully applied to the development of detailed kinetic and feedstock models for complex process chemistries, including complex feedstock characterizations, lignin pyrolysis, and resid pyrolysis.

Book Modeling of Chemical Reactions

Download or read book Modeling of Chemical Reactions written by R.W. Carr and published by Elsevier Science. This book was released on 2007-11-01 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling of Chemical Reactions covers detailed chemical kinetics models for chemical reactions. Including a comprehensive treatment of pressure dependent reactions, which are frequently not incorporated into detailed chemical kinetic models, and the use of modern computational quantum chemistry, which has recently become an extraordinarily useful component of the reaction kinetics toolkit. It is intended both for those who need to model complex chemical reaction processes but have little background in the area, and those who are already have experience and would benefit from having a wide range of useful material gathered in one volume. The range of subject matter is wider than that found in many previous treatments of this subject. The technical level of the material is also quite wide, so that non-experts can gain a grasp of fundamentals, and experts also can find the book useful. A solid introduction to kinetics Material on computational quantum chemistry, an important new area for kinetics Contains a chapter on construction of mechanisms, an approach only found in this book

Book Mathematical Modelling of Gas Phase Complex Reaction Systems  Pyrolysis and Combustion

Download or read book Mathematical Modelling of Gas Phase Complex Reaction Systems Pyrolysis and Combustion written by and published by Elsevier. This book was released on 2019-06-06 with total page 1034 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Volume 45, gives an overview of the different steps involved in the development and application of detailed kinetic mechanisms, mainly relating to pyrolysis and combustion processes. The book is divided into two parts that cover the chemistry and kinetic models and then the numerical and statistical methods. It offers a comprehensive coverage of the theory and tools needed, along with the steps necessary for practical and industrial applications. Details thermochemical properties and "ab initio" calculations of elementary reaction rates Details kinetic mechanisms of pyrolysis and combustion processes Explains experimental data for improving reaction models and for kinetic mechanisms assessment Describes surrogate fuels and molecular reconstruction of hydrocarbon liquid mixtures Describes pollutant formation in combustion systems Solves and validates the kinetic mechanisms using numerical and statistical methods Outlines optimal design of industrial burners and optimization and dynamic control of pyrolysis furnaces Outlines large eddy simulation of turbulent reacting flows

Book Progress Towards Automatic Chemical Kinetic Model Development

Download or read book Progress Towards Automatic Chemical Kinetic Model Development written by Mark Barbet and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of a kinetic model that is predictive of certain quantities of interest (ignition delay times, flame speeds, etc) can broadly be broken into four distinct stages: 1) initial ``crude'' model generation, 2) experimental design, 3) experiments and ab-initio theory calculations, and 4) kinetic model optimization. Advances in data-enabled science and ever-increasing computing power have offered pathways towards eventually automating this process. This work aims to introduce a collection of tools and building blocks that will assist in the overall aim of automatic kinetic model development, and in doing so fill important gaps in the current capabilities available in the literature. In particular, the work here touches on aspects of all four of the stages in the model development process described above. With regard to 1), while there are tools available in the literature for automatic generation of kinetic models for an increasingly large library of fuels, these models remain subject to the constraints imposed by current chemical kinetic model structures and combustion codes.

Book Modeling of Chemical Reactions

Download or read book Modeling of Chemical Reactions written by R.W. Carr and published by Elsevier Science. This book was released on 2007-10-18 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling of Chemical Reactions covers detailed chemical kinetics models for chemical reactions. Including a comprehensive treatment of pressure dependent reactions, which are frequently not incorporated into detailed chemical kinetic models, and the use of modern computational quantum chemistry, which has recently become an extraordinarily useful component of the reaction kinetics toolkit. It is intended both for those who need to model complex chemical reaction processes but have little background in the area, and those who are already have experience and would benefit from having a wide range of useful material gathered in one volume. The range of subject matter is wider than that found in many previous treatments of this subject. The technical level of the material is also quite wide, so that non-experts can gain a grasp of fundamentals, and experts also can find the book useful.