Download or read book Automata and Algebras in Categories written by Jirí Adámek and published by Springer Science & Business Media. This book was released on 1990-08-31 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monograph( based very largely upon results original to the Czechoslovakian authors) presents an abstract account of the theory of automata for sophisticated readers presumed to be already conversant in the language of category theory. The seven chapters are punctuated at frequent intervals by exampl
Download or read book Regular Algebra and Finite Machines written by John Horton Conway and published by Courier Corporation. This book was released on 2012-09-16 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: A world-famous mathematician explores Moore's theory of experiments, Kleene's theory of regular events and expressions, differential calculus of events, the factor matrix, theory of operators, much more. Solutions. 1971 edition.
Download or read book A Book of Abstract Algebra written by Charles C Pinter and published by Courier Corporation. This book was released on 2010-01-14 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
Download or read book A Course in Universal Algebra written by S. Burris and published by Springer. This book was released on 2011-10-21 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Universal algebra has enjoyed a particularly explosive growth in the last twenty years, and a student entering the subject now will find a bewildering amount of material to digest. This text is not intended to be encyclopedic; rather, a few themes central to universal algebra have been developed sufficiently to bring the reader to the brink of current research. The choice of topics most certainly reflects the authors' interests. Chapter I contains a brief but substantial introduction to lattices, and to the close connection between complete lattices and closure operators. In particular, everything necessary for the subsequent study of congruence lattices is included. Chapter II develops the most general and fundamental notions of uni versal algebra-these include the results that apply to all types of algebras, such as the homomorphism and isomorphism theorems. Free algebras are discussed in great detail-we use them to derive the existence of simple algebras, the rules of equational logic, and the important Mal'cev conditions. We introduce the notion of classifying a variety by properties of (the lattices of) congruences on members of the variety. Also, the center of an algebra is defined and used to characterize modules (up to polynomial equivalence). In Chapter III we show how neatly two famous results-the refutation of Euler's conjecture on orthogonal Latin squares and Kleene's character ization of languages accepted by finite automata-can be presented using universal algebra. We predict that such "applied universal algebra" will become much more prominent.
Download or read book Introduction to Coalgebra written by Bart Jacobs and published by Cambridge University Press. This book was released on 2017 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to coalgebra, with clear mathematical explanations and numerous examples and exercises.
Download or read book Fundamental Structures of Algebra and Discrete Mathematics written by Stephan Foldes and published by John Wiley & Sons. This book was released on 2011-02-14 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples.
Download or read book Combinatorial Algebra Syntax and Semantics written by Mark V. Sapir and published by Springer. This book was released on 2014-10-06 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial Algebra: Syntax and Semantics provides comprehensive account of many areas of combinatorial algebra. It contains self-contained proofs of more than 20 fundamental results, both classical and modern. This includes Golod–Shafarevich and Olshanskii's solutions of Burnside problems, Shirshov's solution of Kurosh's problem for PI rings, Belov's solution of Specht's problem for varieties of rings, Grigorchuk's solution of Milnor's problem, Bass–Guivarc'h theorem about growth of nilpotent groups, Kleiman's solution of Hanna Neumann's problem for varieties of groups, Adian's solution of von Neumann-Day's problem, Trahtman's solution of the road coloring problem of Adler, Goodwyn and Weiss. The book emphasize several ``universal" tools, such as trees, subshifts, uniformly recurrent words, diagrams and automata. With over 350 exercises at various levels of difficulty and with hints for the more difficult problems, this book can be used as a textbook, and aims to reach a wide and diversified audience. No prerequisites beyond standard courses in linear and abstract algebra are required. The broad appeal of this textbook extends to a variety of student levels: from advanced high-schoolers to undergraduates and graduate students, including those in search of a Ph.D. thesis who will benefit from the “Further reading and open problems” sections at the end of Chapters 2 –5. The book can also be used for self-study, engaging those beyond t he classroom setting: researchers, instructors, students, virtually anyone who wishes to learn and better understand this important area of mathematics.
Download or read book Basic Category Theory for Computer Scientists written by Benjamin C. Pierce and published by MIT Press. This book was released on 1991-08-07 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading
Download or read book Theory of Mathematical Structures written by Jiří Adámek and published by Springer Science & Business Media. This book was released on 1983-11-30 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Lie Algebras and Representation Theory written by J.E. Humphreys and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.
Download or read book Iteration Theories written by Stephen L. Bloom and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph contains the results of our joint research over the last ten years on the logic of the fixed point operation. The intended au dience consists of graduate students and research scientists interested in mathematical treatments of semantics. We assume the reader has a good mathematical background, although we provide some prelimi nary facts in Chapter 1. Written both for graduate students and research scientists in theoret ical computer science and mathematics, the book provides a detailed investigation of the properties of the fixed point or iteration operation. Iteration plays a fundamental role in the theory of computation: for example, in the theory of automata, in formal language theory, in the study of formal power series, in the semantics of flowchart algorithms and programming languages, and in circular data type definitions. It is shown that in all structures that have been used as semantical models, the equational properties of the fixed point operation are cap tured by the axioms describing iteration theories. These structures include ordered algebras, partial functions, relations, finitary and in finitary regular languages, trees, synchronization trees, 2-categories, and others.
Download or read book Algebra and Coalgebra in Computer Science written by Till Mossakowski and published by Springer. This book was released on 2007-08-22 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: A double-pronged approach makes this book an extremely useful addition to the literature on this highly relevant contemporary topic. Addressing two basic areas of application for algebras and coalgebras – as mathematical objects as well as in the context of their application in computer science – the papers cover topics such as abstract models and logics, specialised models and calculi, algebraic and coalgebraic semantics, and system specification and verification. The book is the refereed proceedings of the second CALCO conference, held in August 2007 in Norway.
Download or read book Handbook of Categorical Algebra Volume 2 Categories and Structures written by Francis Borceux and published by Cambridge University Press. This book was released on 1994-11-03 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Categorical Algebra is designed to give, in three volumes, a detailed account of what should be known by everybody working in, or using, category theory. As such it will be a unique reference. The volumes are written in sequence. The second, which assumes familiarity with the material in the first, introduces important classes of categories that have played a fundamental role in the subject's development and applications. In addition, after several chapters discussing specific categories, the book develops all the major concepts concerning Benabou's ideas of fibred categories. There is ample material here for a graduate course in category theory, and the book should also serve as a reference for users.
Download or read book An Invitation to Applied Category Theory written by Brendan Fong and published by Cambridge University Press. This book was released on 2019-07-18 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
Download or read book Handbook of Categorical Algebra Volume 1 Basic Category Theory written by Francis Borceux and published by Cambridge University Press. This book was released on 1994-08-26 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Categorical Algebra is designed to give, in three volumes, a detailed account of what should be known by everybody working in, or using, category theory. As such it will be a unique reference. The volumes are written in sequence, with the first being essentially self-contained, and are accessible to graduate students with a good background in mathematics. In particular, Volume 1, which is devoted to general concepts, can be used for advanced undergraduate courses on category theory.
Download or read book Fuzzy Automata and Languages written by John N. Mordeson and published by CRC Press. This book was released on 2002-03-19 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy Automata Theory offers the first in-depth treatment of the theory and mathematics of fuzzy automata and fuzzy languages. It effectively compares and contrasts the different approaches used in fuzzy mathematics and automata and includes complete proofs of the theoretical results presented. More than 60 figures and 125 examples illustrate the results, and exercises in each chapter serve not only to test understanding, but also to present material not covered in detail within the text. Although the book is theoretical in nature, the authors also discuss applications in a variety of fields, including databases, medicine, learning systems, and pattern recognition.
Download or read book Semigroups in Complete Lattices written by Patrik Eklund and published by Springer. This book was released on 2018-06-09 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a modern introduction to the theory of quantales. First coined by C.J. Mulvey in 1986, quantales have since developed into a significant topic at the crossroads of algebra and logic, of notable interest to theoretical computer science. This book recasts the subject within the powerful framework of categorical algebra, showcasing its versatility through applications to C*- and MV-algebras, fuzzy sets and automata. With exercises and historical remarks at the end of each chapter, this self-contained book provides readers with a valuable source of references and hints for future research. This book will appeal to researchers across mathematics and computer science with an interest in category theory, lattice theory, and many-valued logic.