EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Atomic Layer Deposited Zinc Oxide tin Oxide Nanolaminates and Its Applications in Thin Film Transistors and Thermoelectric Materials

Download or read book Atomic Layer Deposited Zinc Oxide tin Oxide Nanolaminates and Its Applications in Thin Film Transistors and Thermoelectric Materials written by 洪心寧 and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Zinc Oxide Thin Film Transistors for 3D Microelectronic Applications

Download or read book Zinc Oxide Thin Film Transistors for 3D Microelectronic Applications written by Sang Ha Yoo and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As the current semiconductor industry trend deviates from Moore's Law due to quantum limits discovered upon further scaling of technology nodes, efforts are being put into three-dimensional (3D) stacking of semiconductor devices in integrated circuits (ICs). Since its conduction band pathway arises from its spherically shaped s-orbital, zinc oxide (ZnO) is a promising material for technological advancement towards 3D-stacked devices since it can theoretically retain its bulk mobility even if it is processed at a low temperature. Plasma-enhanced atomic layer deposition (PEALD) system using weak oxidants was utilized to deposit ZnO at a low temperature ( 200 °C), and ZnO thin-film transistors (TFTs) were fabricated based on this system for this study. This dissertation presents efforts to develop ZnO TFTs that are suitable for 3D electronics applications, focusing on high mobility, high current, and scalability aspects of the device. The relationship between the ZnO TFT mobility and the morphology of PEALD ZnO films is studied with emphasis on the grain size variation of the ZnO films. For the nanocrystalline PEALD ZnO films, no direct relationship between grain size and mobility was discovered from the study. On the other hand, a simple N2O-based PEALD Al2O3 passivation layer that enhances the performance of ZnO TFTs by an order of magnitude is developed. The passivated ZnO TFTs exhibit field-effect mobility 90 cm2/Vs and drive current >450 mA/mm. Multiple mobility extraction methods confirm that the high mobility value calculated for the passivated TFTs is not from measurement artifacts. The high current and mobility of the N2O PEALD passivated ZnO TFTs remain even when the passivation layer is selectively removed. The cause of the mobility boost is postulated to be hydrogen incorporation during the passivation process. The high performance of these devices is of interest for 3D ICs and other applications. Metals of different reactivity and work function are explored to overcome the Schottky barrier present in ZnO TFTs. Oxygen vacancies and zinc interstitials generated from the reaction between contact metal and ZnO semiconductors are believed to serve as the source of increased charge carriers to mimic a doping effect at TFT contacts. In addition, doped contact ZnO TFTs are demonstrated as well. We use PEALD ZnO films as the active layer and ALD ZnO films as the doped layer. The fabrication process of PEALD ZnO TFTs with ALD ZnO doped layer resembles that of back-channel-etched a-Si: H TFTs. An acetic acid-based ZnO etchant is used to controllably back etch the channel layer at a rate of 2 nm/sec to etch away the conductive ALD ZnO layer. The fabricated devices exhibit less dominance by the Schottky barrier at contacts. Ferroelectric field-effect transistors (FeFET) using low-temperature processed boron-doped aluminum nitride (Al1-xBxN; AlBN for simplicity) as the gate dielectric are also developed to serve as memory devices combined with ZnO TFT logic devices. With the help of a stable PEALD Al2O3 layer to prevent gate leakage, fabricated ZnO-AlBN FeFETs demonstrated counter-clockwise hysteresis, which is one of the indications of ferroelectricity present in the device. Double-gated ZnO-AlBN FeFETs are also fabricated to further establish that the devices exhibit polarization behavior with known field line terminations. ZnO TFTs and AlBN FeFETs are of interest to the future 3D microelectronics and ICs.

Book Thin Film Electronics with Novel Materials

Download or read book Thin Film Electronics with Novel Materials written by Yiyang Gong and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Novel materials, including zinc oxide (ZnO) and 2D transition metal dichalcogenides (TMDs), have been investigated in this dissertation for the realization of high-performance large-area integrated circuits. These novel materials may provide differential advantages over the established large-area thin film technology based on silicon, which has been extensively employed in applications such as large-area flat panel displays, high-speed active matrix thin film circuits, flexible and wearable electronics, etc. The dissertation begins with the discussion of high-performance plasma-enhanced atomic layer deposition (PEALD) of ZnO thin films and ZnO thin film transistors (TFTs) with a field effect mobility of ~ 10 to 20 cm2/Vs, which have been demonstrated. Offset-drain ZnO TFTs, which are able to withstand or switch voltage beyond 80 V, have also been demonstrated. These results shed light on the realization of large-area active-matrix circuits beyond the capabilities of the current display industry where high circuit speed or high operation voltage is required. To further improve the performance of ZnO-based electronics, many related materials, including doped ZnO, zinc nitride, and aluminum nitride, have been investigated. Doped ZnO has been proposed as the carrier injection layer that can improve the conductivity of metal-semiconductor contact in ZnO TFTs. Aluminum-doped ZnO thin films have been deposited using triisobutyl aluminum (TIBA) as the dopant precursor instead of trimethyl aluminum (TMA) in order to improve the uniformity of dopant distribution because TIBA has much lower vapor pressure than TMA. AZO thin films with resistivity ~ 10-2 cm have been achieved by PEALD. Besides, aluminum nitride and zinc nitride thin films have also been studied using PEALD. In addition to the showerhead PEALD system, a novel inductively coupled plasma ALD system has been designed and set up that provides RF power up to 500 W in order to generate a highly reactive nitrogen plasma source and enable the deposition of high-quality metal nitride at relatively low temperature. These metal nitride thin films may provide additional building blocks to enhance the speed and thermal stability of ZnO-based thin film devices and circuits.Owing to their excellent electrical and mechanical properties, 2D-TMD thin films have been studied for flexible electronics applications. High quality MoS2 and WS2 thin films have been achieved via mechanical exfoliation and chemical vapor deposition. To fabricate MoS2- and WS2-based TFTs, a 5-step device fabrication process has been developed, which is compatible to both the conventional rigid substrate and the ~ 4.8 nm thick solution-cast polyimide (PI) flexible substrate. The MoS2 and WS2 TFTs fabricated on PI substrate exhibit a field effect mobility of between 1 to 20 cm2/Vs, which is similar to that of those fabricated on rigid silicon substrate. More importantly, extraordinary mechanical strength and stability have been demonstrated for MoS2 and WS2 TFTs fabricated on PI substrate. A reasonably small degradation in device performance has been observed in these flexible 2D-TMD TFTs under static bending to the radius of ~ 2mm and after cyclic bending up to 100,000 cycles. Finally, attempts to create integratable 2D-TMD circuits have been demonstrated. To realize large-area 2D-TMD based circuits, growth of wafer-scale continuous WSe2 thin films has been demonstrated using metal organic chemical vapor deposition (MOCVD). Deposition has been achieved at as low as 400 C, which allows deposition on glass and polymeric substrate and enables the transfer-free fabrication of WSe2 TFTs and circuits on arbitrary platforms. Patterning and post-growth thickness modulation of continuous WSe2 thin film have been demonstrated using CF4 plasma and O2 plasma, whereby high-speed etching and nanometer-scale film thinning can be realized. With the capability of depositing and patterning wafer-scale WSe2 thin films, an array of p-channel WSe2 TFTs have been fabricated with a field effect mobility of ~0.01 cm2/Vs and an on-off ratio greater than 104.

Book Zinc Oxide Bulk  Thin Films and Nanostructures

Download or read book Zinc Oxide Bulk Thin Films and Nanostructures written by Chennupati Jagadish and published by Elsevier. This book was released on 2011-10-10 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: With an in-depth exploration of the following topics, this book covers the broad uses of zinc oxide within the fields of materials science and engineering:- Recent advances in bulk , thin film and nanowire growth of ZnO (including MBE, MOCVD and PLD), - The characterization of the resulting material (including the related ternary systems ZgMgO and ZnCdO), - Improvements in device processing modules (including ion implantation for doping and isolation ,Ohmic and Schottky contacts , wet and dry etching), - The role of impurities and defects on materials properties - Applications of ZnO in UV light emitters/detectors, gas, biological and chemical-sensing, transparent electronics, spintronics and thin film

Book Zinc Oxide   A Material for Micro  and Optoelectronic Applications

Download or read book Zinc Oxide A Material for Micro and Optoelectronic Applications written by Norbert H. Nickel and published by Springer Science & Business Media. This book was released on 2005-12-28 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, a significant effort has been devoted to the investigation of ZnO as a suitable semiconductor for UV light-emitting diodes, lasers, and detectors and hetero-substrates for GaN. Research is driven not only by the technological requirements of state-of-the-art applications but also by the lack of a fundamental understanding of growth processes, the role of intrinsic defects and dopants, and the properties of hydrogen. The NATO Advanced Research Workshop on “Zinc oxide as a material for micro- and optoelectronic applications”, held from June 23 to June 25 2004 in St. Petersburg, Russia, was organized accordingly and started with the growth of ZnO. A variety of growth methods for bulk and layer growth were discussed. These techniques comprised growth methods such as closed space vapor transport (CSVT), metal-organic chemical vapor deposition, reactive ion sputtering, and pulsed laser deposition. From a structural point of view using these growth techniques ZnO can be fabricated ranging from single crystalline bulk material to polycrystalline ZnO and nanowhiskers. A major aspect of the ZnO growth is doping. n-type doping is relatively easy to accomplish with elements such al Al or Ga. At room temperature single crystal ZnO exhibits a resistivity of about 0. 3 -cm, an electron mobility of 2 17 -3 225 cm /Vs, and a carrier concentration of 10 cm . In n-type ZnO two shallow donors are observable with activation energies of 30 – 40 meV and 60 – 70 meV.

Book Handbook of Zinc Oxide and Related Materials

Download or read book Handbook of Zinc Oxide and Related Materials written by Zhe Chuan Feng and published by CRC Press. This book was released on 2012-09-26 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through their application in energy-efficient and environmentally friendly devices, zinc oxide (ZnO) and related classes of wide gap semiconductors, including GaN and SiC, are revolutionizing numerous areas, from lighting, energy conversion, photovoltaics, and communications to biotechnology, imaging, and medicine. With an emphasis on engineering and materials science, Handbook of Zinc Oxide and Related Materials provides a comprehensive, up-to-date review of various technological aspects of ZnO. Volume Two focuses on devices and nanostructures created from ZnO and similar materials. The book covers various nanostructures, synthesis/creation strategies, device behavior, and state-of-the-art applications in electronics and optoelectronics. It also provides useful information on the device and nanoscale process and examines the fabrication of LEDs, LDs, photodetectors, and nanodevices. Covering key properties and important technologies of ZnO-based devices and nanoengineering, the handbook highlights the potential of this wide gap semiconductor. It also illustrates the remaining challenging issues in nanomaterial preparation and device fabrication for R&D in the twenty-first century.

Book Zinc Oxide

Download or read book Zinc Oxide written by Hadis Morkoç and published by John Wiley & Sons. This book was released on 2008-12-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first systematic, authoritative and thorough treatment in one comprehensive volume presents the fundamentals and technologies of the topic, elucidating all aspects of ZnO materials and devices. Following an introduction, the authors look at the general properties of ZnO, as well as its growth, optical processes, doping and ZnO-based dilute magnetic semiconductors. Concluding sections treat bandgap engineering, processing and ZnO nanostructures and nanodevices. Of interest to device engineers, physicists, and semiconductor and solid state scientists in general.

Book Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications

Download or read book Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications written by Rayees Ahmad Zargar and published by John Wiley & Sons. This book was released on 2023-09-18 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: METAL OXIDE NANOCOMPOSITE THIN FILMS FOR OPTOELECTRONIC DEVICE APPLICATIONS The book provides insight into the fundamental aspects, latest research, synthesis route development, preparation, and future applications of metal oxide nanocomposite thin films. The fabrication of thin film-based materials is important to the future production of safe, efficient, and affordable energy as the devices convert sunlight into electricity. Thin film devices allow excellent interface engineering for high-performance printable solar cells as their structures are highly reliable and stand-alone systems can provide the required megawatts. They have been used as power sources in solar home systems, remote buildings, water pumping, megawatt-scale power plants, satellites, communications, and space vehicles. Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications covers the basics of advanced nanometal oxide-based materials, their synthesis, characterization, and applications, and all the updated information on optoelectronics. Topics discussed include the implications of metal oxide thin films, which are critical for device fabrications. It provides updated information on the economic aspect and toxicity, with great focus paid to display applications, and covers some core areas of nanotechnology, which are particularly concerned with optoelectronics and the available technologies. The book concludes with insights into the role of nanotechnology and the physics behind photovoltaics. Audience The book will be an important volume for electronics and electrical engineers, nanotechnologists, materials scientists, inorganic chemists in academic research, and those in industries, exploring the applications of nanoparticles in semiconductors, power electronics, and more.

Book Zinc Oxide and Related Materials  Volume 957

Download or read book Zinc Oxide and Related Materials Volume 957 written by Jürgen H. Christen and published by . This book was released on 2007-04-05 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners. The topics covered in this volume, first published in 2007, include devices, defects, spintronics and magnetism, growth, optical properties and nanostructures, and doping and processing TFTs.

Book Zno Thin Film Electronics For More Than Displays

Download or read book Zno Thin Film Electronics For More Than Displays written by Jose Ramirez and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ~ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ~ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow discharging time constants. Finally, to circumvent fabrication challenges on predetermined complex shapes, like curved mirror optics, a technique to transfer electronics from a rigid substrate to a flexible substrate is used. This technique allows various thin films, regardless of their deposition temperature, to be transferred to flexible substrates. Finally, ultra-low power operation of ZnO TFT gas sensors was demonstrated. The ZnO ozone sensors were optimized to operate with excellent electrical stability in ambient conditions, without using elevated temperatures, while still providing good gas sensitivity. This was achieved by using a post-deposition anneal and by partially passivating the contact regions while leaving the semiconductor sensing area open to the ambient. A novel technique to reset the gas sensor using periodic pulsing of a UV light over the sensor results in less than 25 milliseconds recovery time. A pathway to achieve gas selectivity by using organic thin-film layers as filters deposited over the gas sensors tis demonstrated. The ZnO ozone sensor TFTs and the UV light operate at room temperature with an average power below 1 [mu]W.

Book Atomic Layer Deposition of Zinc Based Transparent Conductive Oxides

Download or read book Atomic Layer Deposition of Zinc Based Transparent Conductive Oxides written by Sanjeev Kumar Gurram and published by Fraunhofer Verlag. This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work Atomic Layer deposition of niobium and titanium doped ZnO based Transparent Conductive Oxide (TCO) coatings were developed. The fundamentals required for the deposition and doping of ZnO TCOs are discussed. The various opto-electronic properties of the niobium and titanium doped ZnO films were determined and compared. A model was proposed to explain the various changes in the opto-electronic properties of these films.

Book Effects of Different Oxide Interlayers on the Thermoelectric Properties of Hafnium Doped Zinc Oxide Thin Films by Atomic Layer Deposition

Download or read book Effects of Different Oxide Interlayers on the Thermoelectric Properties of Hafnium Doped Zinc Oxide Thin Films by Atomic Layer Deposition written by 廖涵婷 and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanostructured Zinc Oxide

Download or read book Nanostructured Zinc Oxide written by Kamlendra Awasthi and published by Elsevier. This book was released on 2021-08-10 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. - Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials - Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties - Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors

Book Zinc Oxide Based Nano Materials and Devices

Download or read book Zinc Oxide Based Nano Materials and Devices written by , Prof. Dr. Ahmed Nahhas and published by BoD – Books on Demand. This book was released on 2019-10-09 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a review of recent advances in ZnO-based nanomaterials and devices. ZnO as a nanomaterial has gained substantial interest in the research area of wide bandgap semiconductors and is considered to be one of the major candidates for electronic and photonic applications. ZnO has distinguished and interesting electrical and optical properties and is considered to be a potential material in optoelectronic applications such as solar cells, surface acoustic wave devices, and UV emitters. ZnO's unique properties have attracted several researchers to study its electrical and optical properties. As a nanostructured material, ZnO exhibits many advantages for nanodevices. Moreover, it has the ability to absorb the UV radiation.

Book Oxide Thin Films  Multilayers  and Nanocomposites

Download or read book Oxide Thin Films Multilayers and Nanocomposites written by Paolo Mele and published by Springer. This book was released on 2015-03-26 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the science of nanostructured oxides. It details the fundamental techniques and methodologies involved in oxides thin film and bulk growth, characterization and device processing, as well as heterostructures. Both, experts in oxide nanostructures and experts in thin film heteroepitaxy, contribute the interactions described within this book.