EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Atomic Layer Deposited Metal Oxides for Semiconductors Used in Aqueous Solutions

Download or read book Atomic Layer Deposited Metal Oxides for Semiconductors Used in Aqueous Solutions written by Yi Wei Chen and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, atomic layer deposition (ALD) has become a popular technique to deposit ultra-thin films with superior conformality and thickness control. Because of its unique surface adsorption-limited mechanism and the resulting capability of deposition at low temperatures and moderate pressures, ALD has found industrial applications in field effect transistor fabrication and coating of multilayer interconnection metallization. In this work, I have explored the potential of ALD-grown metal oxide layers in applications beyond typical electronics technologies. In particular, this research has focused on using ALD-grown metal oxides to enhance the performance and stability in aqueous solutions of biomolecular sensors and semiconducting anodes for photoelectrochemical fuel synthesis. In the biosensing application, we have replaced the SiO2 gate dielectric material typically used in high sensitivity bio-field-effect-transistors (bioFET) with high dielectric constant HfO2. The SiO2 bioFET gate dielectric suffers from poor stability and non-ideal dielectric response at the very small physical thicknesses required to achieve high sensitivity. ALD-grown HfO2, on the other hand, is capable of providing high capacitance density with a physically thicker dielectric layer, thanks to its large dielectric constant. With the ALD-HfO2 gate dielectric, biosensor switching behavior was demonstrated using capacitance-voltage measurements in water, while at the same time maintaining the desired high capacitance. In addition, we have verified bio-functionalization of the HfO2 film surface with biotin molecules via photoelectron spectroscopy, and detected streptavidin and avidin binding with capacitance-voltage analysis and molecular AFM imaging methods respectively. For the solar fuel synthesis, we have studied the behavior of ALD-TiO2 tunnel oxides that can protect heretofore unstable semiconductors, such as Si, used as photoanodes in water splitting. For several decades, intense research effort has been devoted to identifying an efficient photoelectrochemical cell for oxidizing water under solar illumination. The resulting hydrogen and oxygen can be used to store energy from the intermittent terrestrial solar resource renewably, using water as a feedstock. However, photoanode materials choices have always been limited because the water oxidation half reaction at the anode surface is highly corrosive and requires large overpotentials. As a result, only oxidation-stable wide bandgap semiconductors such as TiO2 and Fe2O3 have been used as the photoanode. These photoanodes exhibit poor efficiency, however, because of their large bandgaps. Lower bandgap semiconductors, such as Si, are capable of absorbing solar light much more efficiently, but are easily corroded during water oxidation. In this work, a silicon photoanode was passivated by a thin and pinhole-free layer of ALD-TiO2 such that efficient light absorption in the Si and the chemical stability of the TiO2 can be exploited at the same time. This ALD-grown nanocomposite photoanode has been demonstrated to perform water oxidation with low overpotentials, while at the same time maintaining good stability with hours of continuous operation. The tunneling of electronic carriers through the thin ALD-TiO2, required to sustain high oxidation rates, has also been investigated by varying the TiO2 thickness. The annealing temperature and ambient have also been investigated.

Book Atomic Layer Deposition for Semiconductors

Download or read book Atomic Layer Deposition for Semiconductors written by Cheol Seong Hwang and published by Springer Science & Business Media. This book was released on 2013-10-18 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.

Book Selective Chemistry of Metal Oxide Atomic Layer Deposition on Si Based Substrate Surfaces

Download or read book Selective Chemistry of Metal Oxide Atomic Layer Deposition on Si Based Substrate Surfaces written by Lei Guo and published by . This book was released on 2015 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: A versatile home-made atomic layer deposition (ALD) reactor was designed and built in our lab. This reactor can be used to deposit metal oxides on both wafer substrates and porous inorganic particles. Also, a simple procedure for selective ALD has been developed for the processing of silicon wafers in order to facilitate the spatially resolved growth of thin solid films on their surfaces. Specifically, a combination of silylation and UV/ozonolysis was tested as a way to control the concentration of the surface hydroxo groups required for subsequent atomic layer deposition (ALD) of metals or oxides. Water contact angle measurements were used to evaluate the hydrophilicity/hydrophobicity of the surface, a proxy for OH surface coverage, and to optimize the UV/ozonolysis treatment. Silylation with silanes was found to be an efficient way to block the hydroxo sites and to passivate the underlying surface, and UV/O 3 treatments were shown to effectively remove the silylation layer and to regain the surface reactivity. Both O3 and 185 nm UV radiation were determined necessary for the removal of the silylation layer, and additional 254 nm radiation was found to enhance the process. Attenuated total reflection-infrared absorption spectroscopy was employed to assess the success of the silylation and UV/O 3 removal steps, and atomic force microscopy data provided evidence for the retention of the original smoothness of the surface. Selective growth of HfO2 films via TDMAHf + H2 O ALD was seen only on the UV/O3 treated surfaces; total inhibition of the deposition was observed on the untreated silylated surfaces. We believe that the silylation-UV/O 3 procedure advanced here could be easily implemented for the patterning of surfaces in many microelectronic applications.

Book Metal Oxide Nanoparticles in Organic Solvents

Download or read book Metal Oxide Nanoparticles in Organic Solvents written by Markus Niederberger and published by Springer Science & Business Media. This book was released on 2009-09-17 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Nanoparticles in Organic Solvents discusses recent advances in the chemistry involved for the controlled synthesis and assembly of metal oxide nanoparticles, the characterizations required by such nanoobjects, and their size and shape depending properties. In the last few years, a valuable alternative to the well-known aqueous sol-gel processes was developed in the form of nonaqueous solution routes. Metal Oxide Nanoparticles in Organic Solvents reviews and compares surfactant- and solvent-controlled routes, as well as providing an overview of techniques for the characterization of metal oxide nanoparticles, crystallization pathways, the physical properties of metal oxide nanoparticles, their applications in diverse fields of technology, and their assembly into larger nano- and mesostructures. Researchers and postgraduates in the fields of nanomaterials and sol-gel chemistry will appreciate this book’s informative approach to chemical formation mechanisms in relation to metal oxides.

Book Metal Oxide Semiconductors

Download or read book Metal Oxide Semiconductors written by Zhigang Zang and published by John Wiley & Sons. This book was released on 2023-12-11 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Semiconductors Up-to-date resource highlighting highlights emerging applications of metal oxide semiconductors in various areas and current challenges and directions in commercialization Metal Oxide Semiconductors provides a current understanding of oxide semiconductors, covering fundamentals, synthesizing methods, and applications in diodes, thin-film transistors, gas sensors, solar cells, and more. The text presents state-of-the-art information along with fundamental prerequisites for understanding and discusses the current challenges in pursuing commercialization and future directions of this field. Despite rapid advancements in the materials science and device physics of oxide semiconductors over the past decade, the understanding of science and technology in this field remains incomplete due to its relatively short research history; this book aims to bridge the gap between the rapidly advancing research progress in this field and the demand for relevant materials and devices by researchers, engineers, and students. Written by three highly qualified authors, Metal Oxide Semiconductors discusses sample topics such as: Fabrication techniques and principles, covering vacuum-based methods, including sputtering, atomic layer deposition and evaporation, and solution-based methods Fundamentals, progresses, and potentials of p–n heterojunction diodes, Schottky diodes, metal-insulator-semiconductor diodes, and self-switching diodes Applications in thin-film transistors, detailing the current progresses and challenges towards commercialization for n-type TFTs, p-type TFTs, and circuits Detailed discussions on the working mechanisms and representative devices of oxide-based gas sensors, pressure sensors, and PH sensors Applications in optoelectronics, both in solar cells and ultraviolet photodetectors, covering their parameters, materials, and performance Memory applications, including resistive random-access memory, transistor-structured memory devices, transistor-structured artificial synapse, and optical memory transistors A comprehensive monograph covering all aspects of oxide semiconductors, Metal Oxide Semiconductors is an essential resource for materials scientists, electronics engineers, semiconductor physicists, and professionals in the semiconductor and sensor industries who wish to understand all modern developments that have been made in the field.

Book Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications

Download or read book Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications written by Rayees Ahmad Zargar and published by John Wiley & Sons. This book was released on 2023-09-18 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: METAL OXIDE NANOCOMPOSITE THIN FILMS FOR OPTOELECTRONIC DEVICE APPLICATIONS The book provides insight into the fundamental aspects, latest research, synthesis route development, preparation, and future applications of metal oxide nanocomposite thin films. The fabrication of thin film-based materials is important to the future production of safe, efficient, and affordable energy as the devices convert sunlight into electricity. Thin film devices allow excellent interface engineering for high-performance printable solar cells as their structures are highly reliable and stand-alone systems can provide the required megawatts. They have been used as power sources in solar home systems, remote buildings, water pumping, megawatt-scale power plants, satellites, communications, and space vehicles. Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications covers the basics of advanced nanometal oxide-based materials, their synthesis, characterization, and applications, and all the updated information on optoelectronics. Topics discussed include the implications of metal oxide thin films, which are critical for device fabrications. It provides updated information on the economic aspect and toxicity, with great focus paid to display applications, and covers some core areas of nanotechnology, which are particularly concerned with optoelectronics and the available technologies. The book concludes with insights into the role of nanotechnology and the physics behind photovoltaics. Audience The book will be an important volume for electronics and electrical engineers, nanotechnologists, materials scientists, inorganic chemists in academic research, and those in industries, exploring the applications of nanoparticles in semiconductors, power electronics, and more.

Book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells

Download or read book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells written by Wilfried G. J. H. M. van Sark and published by Springer Science & Business Media. This book was released on 2011-11-16 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

Book Thin Films  Atomic Layer Deposition  and 3D Printing

Download or read book Thin Films Atomic Layer Deposition and 3D Printing written by Kingsley Ukoba and published by CRC Press. This book was released on 2023-11-29 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin Films, Atomic Layer Deposition, and 3D Printing explains the concept of thin films, atomic layers deposition, and the Fourth Industrial Revolution (4IR) with an aim to illustrate existing resources and give a broader perspective of the involved processes as well as provide a selection of different types of 3D printing, materials used for 3D printing, emerging trends and applications, and current top-performing 3D printers using different technologies. It covers the concept of the 4IR and its role in current and future human endeavors for both experts/nonexperts. The book includes figures, diagrams, and their applications in real-life situations. Features: Provides comprehensive material on conventional and emerging thin film, atomic layer, and additive technologies. Discusses the concept of Industry 4.0 in thin films technology. Details the preparation and properties of hybrid and scalable (ultra) thin materials for advanced applications. Explores detailed bibliometric analyses on pertinent applications. Interconnects atomic layer deposition and additive manufacturing. This book is aimed at researchers and graduate students in mechanical, materials, and metallurgical engineering.

Book Atomic Layer Deposition of Alkaline Earth Oxides

Download or read book Atomic Layer Deposition of Alkaline Earth Oxides written by Han Wang and published by . This book was released on 2013 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Cleaning Science and Technology 14  SCST 14

Download or read book Semiconductor Cleaning Science and Technology 14 SCST 14 written by T. Hattori and published by The Electrochemical Society. This book was released on 2015 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Area selective Atomic Layer Deposition of Silicide and Oxides Using Inherent Substrate Dependent Processes

Download or read book Area selective Atomic Layer Deposition of Silicide and Oxides Using Inherent Substrate Dependent Processes written by Jong Youn Choi and published by . This book was released on 2019 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last three decades, the semiconductor industry continued to grow in all aspects such as the device performance, power efficiency, data process speed, manufacturing yield and costs. One of the most important factors that made this big stride possible was a scaling of metal-oxide-semiconductor field effect transistors (MOSFETs), the fundamental and core component of microelectronic devices. The miniaturization of MOSFETs allowed for the integration of billions of transistors into a single microprocessor chip, and currently the industry is looking into the issues of fabricating MOSFETs to further scale down to a sub-10 nm node using three-dimensional features. A significant challenge of fabricating MOSFETs at the sub-10 nm node is the patterning process, which requires excellent spatial uniformity, a detailed positioning of material, and perfect thickness control. To avoid the technical complexity and limitation of a conventional top-down patterning technique, lithography, a new approach of patterning MOSFET components should be developed. In this work, selective deposition of molybdenum silicide (MoSix), molybdenum silicate (MoSiOx) and hafnium oxide (HfOx) were demonstrated using selective atomic layer deposition, a bottom-up approach of nanoscale patterning for MOSFETs. Selectivities were obtained by the difference in the chemical reactivity of precursors between the different substrates of interest. The deposition was performed in a self-limiting manner or carefully controlled decomposition of the precursor which provides conformality with a sub-nanoscale thickness control. In sum, this study focuses on the inherently selective deposition processes based on the surface chemistry and the engineering techniques for selectivity enhancements which can be integrated into three-dimensional MOSFET fabrication processes.

Book A Method for Atomic Layer Deposition of Complex Oxide Thin Films

Download or read book A Method for Atomic Layer Deposition of Complex Oxide Thin Films written by Brian Robert Beatty and published by . This book was released on 2013 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced technologies derive many of their capabilities from the advanced materials that they are made from. Complex oxides are a class of materials which are driving technological advancement in a host of di erent directions. These highly functional materials have a great variety of useful properties, which can be chosen and even engineered. Advanced materials require advanced deposition methods. Atomic layer deposition (ALD), a variant of chemical vapor deposition (CVD), is gaining more use in industry for its ability to provide ultra-high lm thickness resolution (down to 0.1 nm), capability to conformally coat three-dimensional structures, and its high uniformity across large surface areas. Additionally, ALD processes provide a possibility to improve economic and environmental viability of the process as compared to CVD by using and wasting less toxic reactants and expelling fewer nano-particulate byproducts. ALD processes are highly mature for many binary oxides commonly used in the semiconductor industries, however processes for depositing heavy metal oxides and complex oxides - oxides containing two or more separate metallic cations - are sorely lacking in literature. The primary focus of this work is the development of a process for depositing the complex perovskite oxide lead titanate (PbTiO3), an end group of the lead zirconate titanate family (PbZrxTi1-xO3), which has valuable technical applications as well as serves as a template for applying this research into other material systems. The author gratefully acknowledges the Army Research O ce (ARO) for their support of this project under the funding provided by Grant # W911NF-08-1-0067.

Book Atomic Layer Deposition Applications 7

Download or read book Atomic Layer Deposition Applications 7 written by J. W. Elam and published by The Electrochemical Society. This book was released on 2011 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Printed Electronics Technologies

Download or read book Printed Electronics Technologies written by Wei Wu and published by Royal Society of Chemistry. This book was released on 2022-07-20 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the key printing technologies for printed electronics.

Book Atomic Layer Deposition of Functional Oxide Materials

Download or read book Atomic Layer Deposition of Functional Oxide Materials written by Pei-Yu Chen (Ph. D. in chemical engineering) and published by . This book was released on 2020 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid development of semiconductor industry driven by the need of electronic devices with lower cost, higher speed, lower power consumption and functionality requires employment of new semiconductors and new oxide materials. In this research, atomic layer deposition (ALD), which has become an important deposition technique for industries, was applied as the main growth method for oxide thin films. The ALD of rare earth oxides as gate dielectrics on GaN semiconductor and the ALD of functional perovskite stannates on SrTiO3 (STO) crystal were explored. GaN has been considered as a next generation semiconductor due to its superior properties. A suitable surface cleaning process and an appropriate gate oxide are necessary to improve GaN device performance. The GaN(0001) surface cleaned by both ex-situ wet cleaning (HCl and NH4OH solutions) and in-situ N2 plasma treatment was proved to be impurity-free by x-ray photoelectron spectroscopy and was ready for the following crystalline rare earth oxide growths. In this work, Er2O3 and La2O3 were selected as gate oxides on GaN(0001), and their film growth, properties, structures and interfaces with GaN were studied. The Er2O3 thin films were smooth and crystalline as-deposited on GaN(0001) with a cubic phase while the La2O3 films exhibited an island growth when deposited directly on GaN(0001). A template layer was required to form a 2-dimensional La2O3 thin film, and the La2O3 structure might be different (cubic or hexagonal) with different template layers and film thicknesses. Post-deposition annealing in vacuum could help improve the film quality, however, it would also increase the interfacial thickness. Perovskite oxides, which can offer a wide range of functionalities, are another family of materials that people are interested in. BaSnO3 and SrSnO3 have emerged as popular perovskites in the past decade owing to their wide band gap, high optical transparency, and high electron mobility at room temperature after doped with La. Cubic BaSnO3(001) and pseudocubic SrSnO3(001) were deposited by ALD for the first time and were investigated on single STO(001) crystal. BaSnO3 and SrSnO3 films were smooth and crystalline but relaxed toward the bulk structure because of the large lattice mismatches between the films and STO. Stoichiometry of the film and the post-deposition annealing condition are critical to the film properties

Book Chemical Solution Deposition of Functional Oxide Thin Films

Download or read book Chemical Solution Deposition of Functional Oxide Thin Films written by Theodor Schneller and published by Springer Science & Business Media. This book was released on 2014-01-24 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first text to cover all aspects of solution processed functional oxide thin-films. Chemical Solution Deposition (CSD) comprises all solution based thin- film deposition techniques, which involve chemical reactions of precursors during the formation of the oxide films, i. e. sol-gel type routes, metallo-organic decomposition routes, hybrid routes, etc. While the development of sol-gel type processes for optical coatings on glass by silicon dioxide and titanium dioxide dates from the mid-20th century, the first CSD derived electronic oxide thin films, such as lead zirconate titanate, were prepared in the 1980’s. Since then CSD has emerged as a highly flexible and cost-effective technique for the fabrication of a very wide variety of functional oxide thin films. Application areas include, for example, integrated dielectric capacitors, ferroelectric random access memories, pyroelectric infrared detectors, piezoelectric micro-electromechanical systems, antireflective coatings, optical filters, conducting-, transparent conducting-, and superconducting layers, luminescent coatings, gas sensors, thin film solid-oxide fuel cells, and photoelectrocatalytic solar cells. In the appendix detailed “cooking recipes” for selected material systems are offered.

Book TMS 2020 149th Annual Meeting   Exhibition Supplemental Proceedings

Download or read book TMS 2020 149th Annual Meeting Exhibition Supplemental Proceedings written by The Minerals, Metals & Materials Society and published by Springer Nature. This book was released on 2020-02-13 with total page 2046 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection presents papers from the 149th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society.