EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Atmospheric Water Vapour Detection Using Satellite GPS Profiling

Download or read book Atmospheric Water Vapour Detection Using Satellite GPS Profiling written by Jacob Grove-Rasmussen and published by . This book was released on 2003 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Global Water Vapor Estimates from Measurements from Active GPS RO Sensors and Passive Infrared and Microwave Sounders

Download or read book Global Water Vapor Estimates from Measurements from Active GPS RO Sensors and Passive Infrared and Microwave Sounders written by Shu-Peng Ho and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Water vapor plays an important role in both climate change processes and atmospheric chemistry and photochemistry. Global water vapor vertical profile can be derived from satellite infrared and microwave sounders. However, no single remote sensing technique is capable of completely fulfilling the needs for numerical weather prediction, chemistry, and climate studies in terms of vertical resolution, spatial and temporal coverage, and accuracy. In addition to the passive infrared and microwave sounder observations, the active global positioning system (GPS) radio occultation (RO) technique can also provide all-weather temperature and moisture profiles. In this chapter, we describe the current developments of global water vapor vertical profile and total precipitable water derived from active GPS RO measurements. In addition, we also demonstrate the potential improvement of global water vapor estimates using combined active GPS RO and passive IR/MW particularly from Atmospheric InfraRed Sounder (AIRS) and Advanced Technology Microwave Sounder (ATMS) measurements. Results show that because RO data are very sensitive to water vapor variation in the moisture rich troposphere, the RO data are able to provide extra water vapor information for the combined AIRS/ATMS and RO retrievals in the lower troposphere.

Book Global Navigation Satellite System Monitoring of the Atmosphere

Download or read book Global Navigation Satellite System Monitoring of the Atmosphere written by Guergana Guerova and published by Elsevier. This book was released on 2021-09-14 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global Navigation Satellite System (GNSS) monitoring of the atmosphere is an interdisciplinary topic: a collaboration between geodetic and atmospheric communities. As such, this topic requires sufficient basic knowledge about both GNSS and the atmosphere. Global Navigation Satellite System Monitoring of the Atmosphere begins by introducing GNSS, its components, and signals. It then explains the basics of the atmosphere, starting from the ionosphere to the troposphere. The GNSS tropospheric monitoring is separated for application in numerical weather prediction and nowcasting. Further chapters focus on the application of GNSS for monitoring the climate as well as soil moisture. Finally, the book concludes by discussing GNSS processing along with introducing the latest developments and applications for using atmospheric data to provide precise real-time GNSS products. Explains the basics of GNSS positioning and signals Includes the state of the art in GNSS observations of the atmosphere and hydrosphere Presents the basics of numerical weather prediction and analysis

Book An Assessment of the Quality of GPS Water Vapour Estimates and Their Use in Operational Meteorology and Climate Monitoring

Download or read book An Assessment of the Quality of GPS Water Vapour Estimates and Their Use in Operational Meteorology and Climate Monitoring written by Jonathan Jones and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The path delay between a GPS satellite and a ground based GPS receiver depends, after elimination of ionospheric effects using a combination of the two GPS frequencies, on the integral effect of the densities of dry air and water vapour along the signal path. The total delay in the signal from each satellite is known as the slant delay as the path is most likely to be non-azimuthal. The slant paths are then transferred into the vertical (or zenith) by an elevation mapping function, and this new parameter is known as the Zenith Total Delay or ZTD. ZTD gives a measure for the integrated tropospheric condition and is now widely accepted as a standard product from a network of dual frequency GPS receivers. With further calculation, taking into account surface pressure and temperature, we can then convert a portion of the ZTD into an estimate of the Integrated Water Vapour content of the atmosphere (IWV). As IWV may potentially change rapidly on a very short timescale, it is the speed at which IWV can be calculated which is of critical importance to short term meteorological forecasting. Often, rapid changes in IWV are associated with high humidity conditions caused by extreme weather events such as thunderstorms. Extreme weather events such as these are typically difficult to predict and track under current operational meteorological systems and, as they have the potential to cause great damage, it is in the interests to both the public and Met Services to significantly improve nowcasting wherever possible. As such the requirement for dense near real-time GPS networks for meteorological applications becomes apparent. Furthermore water vapour is one of the most important constituents of the atmosphere as moisture and latent heat are primarily transmitted through the water vapour phase. As well as this, water vapour is one of the most important greenhouse gases, and as such accurate monitoring of water vapour is of great importance to climatological research. This thesis assesses the quality of GPS water vapour estimates by comparison against a number of other remote sensing instruments to determine what the true value of the water vapour is and how well GPS water vapour estimates accurately represent real atmospheric fluctuations. Through these comparisons we can derive site specific bias corrections and thus, reconstruct a bias corrected time series of data for climate applications. Furthermore to ensure all biases associated with GPS processing changes are removed, a long time series of raw GPS data has been reprocessed under a consistent processing routine to again identify any climate trends in the data. Finally, this thesis addresses the question of whether near real-time GPS derived tropospheric estimates are of sufficient quality for climate applications without the need for time consuming reprocessing.

Book Estimation of Total Precipitable Water Vapour  An Empirical Model Approach

Download or read book Estimation of Total Precipitable Water Vapour An Empirical Model Approach written by Makama Ezekiel Kaura & Lim Hwee San and published by Penerbit USM. This book was released on 2021-12-08 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book essentially covers: Temporal and spatial distribution of total precipitable water (TPW), derived from ATOVS measurements and radiosonde profiling across different geographical regions and climatic seasons in Peninsular Malaysia. Distribution of TPW at different altitudes (atmospheric layers) namely upper, lower and middle layers. Computation of empirical models correlating TPW at middle and higher atmospheric layers with that of the lower layer in order to establish possible interlayer correlation. Development of models to estimate/predict layered (lower, middle and upper) and TPW using precipitable water obtained from ATOVS satellite data and surface meteorological data (temperature, pressure and relative humidity). Development and comparison of artificial neural networks (ANN) models with the multiple linear regression (MLR) models. Contrasting precipitable water data from ATOVS with radiosonde observations, portrays the former as suitable for studies on TPW. The two sources of water vapour profiles agreed reasonably well, both seasonally and spatially across the different geographical regions and climatic seasons in Peninsular Malaysia. The developed MLR based models provide excellent predictive capabilities with seasonal and spatial dependency, especially during the northeast monsoon and northwards across Peninsular Malaysia.

Book Environmental Geoinformatics

Download or read book Environmental Geoinformatics written by Joseph Awange and published by Springer. This book was released on 2018-12-08 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition includes updated chapters from the first edition as well as five additional new chapters (Light detection and ranging (LiDAR), CORONA historical de-classified products, Unmanned Aircraft Vehicles (UAVs), GNSS-reflectometry and GNSS applications to climate variability), shifting the main focus from monitoring and management to extreme hydro-climatic and food security challenges and exploiting big data. Since the publication of first edition, much has changed in terms of technology, and the demand for geospatial data has increased with the advent of the big data era. For instance, the use of laser scanning has advanced so much that it is unavoidable in most environmental monitoring tasks, whereas unmanned aircraft vehicles (UAVs)/drones are emerging as efficient tools that address food security issues as well as many other contemporary challenges. Furthermore, global navigation satellite systems (GNSS) are now responding to challenges posed by climate change by unravelling the impacts of teleconnection (e.g., ENSO) as well as advancing the use of reflected signals (GNSS-reflectometry) to monitor, e.g., soil moisture variations. Indeed all these rely on the explosive use of “big data” in many fields of human endeavour. Moreover, with the ever-increasing global population, intense pressure is being exerted on the Earth’s resources, leading to significant changes in its land cover (e.g., deforestation), diminishing biodiversity and natural habitats, dwindling fresh water supplies, and changing weather and climatic patterns (e.g., global warming, changing sea level). Environmental monitoring techniques that provide information on these are under scrutiny from an increasingly environmentally conscious society that demands the efficient delivery of such information at a minimal cost. Environmental changes vary both spatially and temporally, thereby putting pressure on traditional methods of data acquisition, some of which are highly labour intensive, such as animal tracking for conservation purposes. With these challenges, conventional monitoring techniques, particularly those that record spatial changes call for more sophisticated approaches that deliver the necessary information at an affordable cost. One direction being pursued in the development of such techniques involves environmental geoinformatics, which can act as a stand-alone method or complement traditional methods.

Book Hydrometeorology

    Book Details:
  • Author : Kevin Sene
  • Publisher : Springer
  • Release : 2015-12-09
  • ISBN : 331923546X
  • Pages : 432 pages

Download or read book Hydrometeorology written by Kevin Sene and published by Springer. This book was released on 2015-12-09 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition explores some of the latest techniques used to provide forecasts for a wide range of water-related applications in areas such as floods, droughts, water resources and environmental impacts. The practical uses can range from decisions on whether to issue a flood warning through to providing longer-term advice such as on when to plant and harvest crops or how to operate reservoirs for water supply and hydropower schemes. It provides an introduction to the topic for practitioners and researchers and useful background for courses in areas such as civil engineering, water resources, meteorology and hydrology. As in the first edition, the first section considers topics such as monitoring and forecasting techniques, demand forecasting and how forecasts are interpreted when issuing warnings or advice. Separate chapters are now included for meteorological and catchment monitoring techniques allowing a more in-depth discussion of topics such as weather radar and water quality observations. The chapters on meteorological and hydrological forecasting now include a greater emphasis on rainfall forecasting and ensemble and probabilistic techniques. Regarding the interpretation of forecasts, an updated chapter discusses topics such as approaches to issuing warnings and the use of decision support systems and risk-based techniques. Given the rapid pace of development in flash flood fore casting techniques, flash floods and slower responding riverine floods are now considered in separate chapters. This includes more detail on forecasting floods in large river basins and on methods for providing early warnings of debris flows, surface water flooding and ice jam and dam break floods. Later chapters now include more information on developing areas such as environmental modelling and seasonal flow forecasting. As before examples of operational systems are provided throughout and the extensive sets of references which were a feature of the first edition have been revised and updated. Key themes • floods • droughts • meteorological observations • catchment monitoring • meteorological forecasts • hydrological forecasts • demand forecasts • reservoirs • water resources • water quality • decision support • data assimilation • probabilistic forecasts Kevin Sene is a civil engineer and researcher with wide experience in flood risk management, water resources and hydrometeorology. He has previously published books on flood warning, forecasting and emergency response and flash floods (Springer 2008, 2013).

Book Zonal Profiles of Atmospheric Water Vapor

Download or read book Zonal Profiles of Atmospheric Water Vapor written by Peter M. Kuhn and published by . This book was released on 1975 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Environmental Geoinformatics

    Book Details:
  • Author : Joseph L. Awange
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-13
  • ISBN : 3642340857
  • Pages : 541 pages

Download or read book Environmental Geoinformatics written by Joseph L. Awange and published by Springer Science & Business Media. This book was released on 2013-06-13 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is no doubt that today, perhaps more than ever before, humanity faces a myriad of complex and demanding challenges. These include natural resource depletion and environmental degradation, food and water insecurity, energy shortages, diminishing biodiversity, increasing losses from natural disasters, and climate change with its associated potentially devastating consequences, such as rising sea levels. These human-induced and natural impacts on the environment need to be well understood in order to develop informed policies, decisions, and remedial measures to mitigate current and future negative impacts. To achieve this, continuous monitoring and management of the environment to acquire data that can be soundly and rigorously analyzed to provide information about its current state and changing patterns, and thereby allow predictions of possible future impacts, are essential. Developing pragmatic and sustainable solutions to address these and many other similar challenges requires the use of geodata and the application of geoinformatics. This book presents the concepts and applications of geoinformatics, a multidisciplinary field that has at its core different technologies that support the acquisition, analysis and visualization of geodata for environmental monitoring and management. We depart from the 4D to the 5D data paradigm, which defines geodata accurately, consistently, rapidly and completely, in order to be useful without any restrictions in space, time or scale to represent a truly global dimension of the digital Earth. The book also features the state-of-the-art discussion of Web-GIS. The concepts and applications of geoinformatics presented in this book will be of benefit to decision-makers across a wide range of fields, including those at environmental agencies, in the emergency services, public health and epidemiology, crime mapping, environmental management agencies, tourist industry, market analysis and e-commerce, or mineral exploration, among many others. The title and subtitle of this textbook convey a distinct message. Monitoring -the passive part in the subtitle - refers to observation and data acquisition, whereas management - the active component - stands for operation and performance. The topic is our environment, which is intimately related to geoinformatics. The overall message is: all the mentioned elements do interact and must not be separated. Hans-Peter B ahr, Prof. Dr.-Ing. Dr.h.c., Karlsruhe Institute of Technology (KIT), Germany.

Book Profiling of Atmospheric Water Vapor with Mir and Lase

Download or read book Profiling of Atmospheric Water Vapor with Mir and Lase written by J. R. Wang and published by BiblioGov. This book was released on 2013-07 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper presents the first and the only simultaneous measurements of water vapor by MIR (Millimeter-wave Imaging Radiometer) and LASE (Lidar Atmospheric Sounding Experiment) on board the same ER-2 aircraft. Water vapor is one of the most important constituents in the Earth's atmosphere, as its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. Its concentration, as measured in terms of relative humidity, determines the extinction coefficient of atmospheric aerosol particles and therefore visibility. These considerations point to the need for effective and frequent measurements of the atmospheric water vapor. The MIR and LASE instruments provide measurements of water vapor profiles with two markedly different techniques. LASE can give water vapor profiles with excellent vertical resolution under clear condition, while MIR can retrieve water vapor profiles with a crude vertical resolution even under a moderate cloud cover. Additionally, millimeter-wave measurements are relatively simple and provide better spatial coverage.

Book Studies of Atmospheric Water Vapour Using Satellite Data

Download or read book Studies of Atmospheric Water Vapour Using Satellite Data written by C. T. Mutlow and published by . This book was released on 1984 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Atmospheric Rivers

    Book Details:
  • Author : F. Martin Ralph
  • Publisher : Springer Nature
  • Release : 2020-07-10
  • ISBN : 3030289060
  • Pages : 284 pages

Download or read book Atmospheric Rivers written by F. Martin Ralph and published by Springer Nature. This book was released on 2020-07-10 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the standard reference based on roughly 20 years of research on atmospheric rivers, emphasizing progress made on key research and applications questions and remaining knowledge gaps. The book presents the history of atmospheric-rivers research, the current state of scientific knowledge, tools, and policy-relevant (science-informed) problems that lend themselves to real-world application of the research—and how the topic fits into larger national and global contexts. This book is written by a global team of authors who have conducted and published the majority of critical research on atmospheric rivers over the past years. The book is intended to benefit practitioners in the fields of meteorology, hydrology and related disciplines, including students as well as senior researchers.

Book Remote Sensing of Atmospheric Water Vapor Field with Tomography Using Multi sensor Data

Download or read book Remote Sensing of Atmospheric Water Vapor Field with Tomography Using Multi sensor Data written by Biyan Chen and published by . This book was released on 2017 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: To assess the quality of water vapor data from various observation systems, an intercomparison study was conducted for water vapor data derived from GPS, radiosonde, water vapor radiometer (WVR), non-hydrostatic model (NHM), and European Center for Medium-Range Weather Forecasts (ECMWF). For ZWD comparison with radiosonde data, ECMWF achieves the highest accuracy of 17.73 mm (~2.87 mm in precipitable water vapor (PWV)). GPS, WVR, and NHM have RMS errors of 18.06 mm (~2.93 mm in PWV), 18.15 mm (~2.94 mm in PWV), and 29.53 mm (~4.78 mm in PWV), respectively. Slant wet delays (SWD) estimated by GPS were assessed by SWDs derived from ECMWF, an overall accuracy of 36.44 mm (~5.90 mm in slant PWV) is yielded. Water vapor tomographic experiments were carried out using multiple data from GPS, radiosonde, WVR, NHM, sunphototmeter, and synoptic observations in Hong Kong. Experimental results have revealed that the best vertical constraint scheme is using average radiosonde profiles observed during the three days prior to the tomographic epoch. In the evaluation by radiosonde observations, the multi-sensor tomographic wet refractivity fields achieved an overall accuracy of 7.13 mm/km. In the vertical direction, RMS errors generally decrease with altitude from 11.44 mm/km at the lowest layer (0 to 0.4 km) to 3.30 mm/km at the uppermost layer (7.5 to 8.5 km). The tomographic results obtain RMS errors in the range of 6~9 mm/km at the horizontal grids when compared with ECMWF data. An important goal of water vapor tomography is to benefit the extreme weather prediction and thus to mitigate ensuing hazards. Due to the transfer of energy in the atmospheric processes, atmospheric water vapor has a strong influence on formation and lifecycle of severe weathers. Three heavy precipitation events that occurred in Hong Kong were investigated to examine the potential of water vapor tomography in extreme weather prediction. Several positive findings demonstrated the ability of tomography in forecasting heavy rains as it can detect atmospheric instability before the events.

Book Physics and Chemistry of the Arctic Atmosphere

Download or read book Physics and Chemistry of the Arctic Atmosphere written by Alexander Kokhanovsky and published by Springer Nature. This book was released on 2020-01-29 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents current knowledge on chemistry and physics of Arctic atmosphere. Special attention is given to studies of the Arctic haze phenomenon, Arctic tropospheric clouds, Arctic fog, polar stratospheric and mesospheric clouds, atmospheric dynamics, thermodynamics and radiative transfer as related to the polar environment. The atmosphere-cryosphere feedbacks and atmospheric remote sensing techniques are presented in detail. The problems of climate change in the Arctic are also addressed.

Book Stratosphere Troposphere Interactions

Download or read book Stratosphere Troposphere Interactions written by K. Mohanakumar and published by Springer Science & Business Media. This book was released on 2008-07-03 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stratospheric processes play a signi?cant role in regulating the weather and c- mate of the Earth system. Solar radiation, which is the primary source of energy for the tropospheric weather systems, is absorbed by ozone when it passes through the stratosphere, thereby modulating the solar-forcing energy reaching into the t- posphere. The concentrations of the radiatively sensitive greenhouse gases present in the lower atmosphere, such as water vapor, carbon dioxide, and ozone, control the radiation balance of the atmosphere by the two-way interaction between the stratosphere and troposphere. The stratosphere is the transition region which interacts with the weather s- tems in the lower atmosphere and the richly ionized upper atmosphere. Therefore, this part of the atmosphere provides a long list of challenging scienti?c problems of basic nature involving its thermal structure, energetics, composition, dynamics, chemistry, and modeling. The lower stratosphere is very much linked dynamically, radiatively,and chemically with the upper troposphere,even though the temperature characteristics of these regions are different. The stratosphere is a region of high stability, rich in ozone and poor in water - por and temperature increases with altitude. The lower stratospheric ozone absorbs the harmful ultraviolet (UV) radiation from the sun and protects life on the Earth. On the other hand, the troposphere has high concentrations of water vapor, is low in ozone, and temperature decreases with altitude. The convective activity is more in the troposphere than in the stratosphere.