EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Asset Prices on Bayesian Learning Paths

Download or read book Asset Prices on Bayesian Learning Paths written by Massimo Guidolin and published by . This book was released on 2000 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2007 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Machine Learning in Asset Pricing

Download or read book Machine Learning in Asset Pricing written by Stefan Nagel and published by Princeton University Press. This book was released on 2021-05-11 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricing Investors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are well-suited for solving prediction problems. Accordingly, ML methods are quickly becoming part of the toolkit in asset pricing research and quantitative investing. In this book, Stefan Nagel examines the promises and challenges of ML applications in asset pricing. Asset pricing problems are substantially different from the settings for which ML tools were developed originally. To realize the potential of ML methods, they must be adapted for the specific conditions in asset pricing applications. Economic considerations, such as portfolio optimization, absence of near arbitrage, and investor learning can guide the selection and modification of ML tools. Beginning with a brief survey of basic supervised ML methods, Nagel then discusses the application of these techniques in empirical research in asset pricing and shows how they promise to advance the theoretical modeling of financial markets. Machine Learning in Asset Pricing presents the exciting possibilities of using cutting-edge methods in research on financial asset valuation.

Book Behavioral Finance and Asset Prices

Download or read book Behavioral Finance and Asset Prices written by David Bourghelle and published by Springer Nature. This book was released on 2023-04-05 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, the financial markets have experienced various crises, shocks and disruptive events, driving high levels of volatility. This volatility is too strong to be fully justified simply by changes in fundamentals. This volume discusses these highly relevant issues with special focus on asset pricing and behavioral finance. Financial price assets of the 2020s appear to be driven by various attractors in addition to fundamentals, and there is no doubt that investor emotions, market sentiment, the news, and external factors such as uncertainty all play a key role. This has been clearly observed in recent years, especially during the ongoing coronavirus pandemic that has changed the common perception of the way financial markets work.

Book Risk Finance and Asset Pricing

Download or read book Risk Finance and Asset Pricing written by Charles S. Tapiero and published by John Wiley & Sons. This book was released on 2010-09-24 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to financial engineering that stresses real-world applications Financial engineering expert Charles S. Tapiero has his finger on the pulse of shifts coming to financial engineering and its applications. With an eye toward the future, he has crafted a comprehensive and accessible book for practitioners and students of Financial Engineering that emphasizes an intuitive approach to financial and quantitative foundations in financial and risk engineering. The book covers the theory from a practitioner perspective and applies it to a variety of real-world problems. Examines the cornerstone of the explosive growth in markets worldwide Presents important financial engineering techniques to price, hedge, and manage risks in general Author heads the largest financial engineering program in the world Author Charles Tapiero wrote the seminal work Risk and Financial Management.

Book Market Microstructure Theory

Download or read book Market Microstructure Theory written by Maureen O'Hara and published by John Wiley & Sons. This book was released on 1998-03-06 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by one of the leading authorities in market microstructure research, this book provides a comprehensive guide to the theoretical work in this important area of finance.

Book Empirical Asset Pricing

Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.

Book Information and Learning in Markets

Download or read book Information and Learning in Markets written by Xavier Vives and published by Princeton University Press. This book was released on 2010-01-25 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ways financial analysts, traders, and other specialists use information and learn from each other are of fundamental importance to understanding how markets work and prices are set. This graduate-level textbook analyzes how markets aggregate information and examines the impacts of specific market arrangements--or microstructure--on the aggregation process and overall performance of financial markets. Xavier Vives bridges the gap between the two primary views of markets--informational efficiency and herding--and uses a coherent game-theoretic framework to bring together the latest results from the rational expectations and herding literatures. Vives emphasizes the consequences of market interaction and social learning for informational and economic efficiency. He looks closely at information aggregation mechanisms, progressing from simple to complex environments: from static to dynamic models; from competitive to strategic agents; and from simple market strategies such as noncontingent orders or quantities to complex ones like price contingent orders or demand schedules. Vives finds that contending theories like informational efficiency and herding build on the same principles of Bayesian decision making and that "irrational" agents are not needed to explain herding behavior, booms, and crashes. As this book shows, the microstructure of a market is the crucial factor in the informational efficiency of prices. Provides the most complete analysis of the ways markets aggregate information Bridges the gap between the rational expectations and herding literatures Includes exercises with solutions Serves both as a graduate textbook and a resource for researchers, including financial analysts

Book Financial Modelling with Forward looking Information

Download or read book Financial Modelling with Forward looking Information written by Nadi Serhan Aydın and published by Springer. This book was released on 2017-06-12 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on modelling financial information flows and information-based asset pricing framework. After introducing the fundamental properties of the framework, it presents a short information-theoretic perspective with a view to quantifying the information content of financial signals, and links the present framework with the literature on asymmetric information and market microstructure by means of a dynamic, bipartite, heterogeneous agent network. Numerical and explicit analyses shed light on the effects of differential information and information acquisition on the allocation of profit and loss as well as the pace of fundamental price discovery. The dynamic programming method is used to seek an optimal strategy for utilizing superior information. Lastly, the book features an implementation of the present framework using real-world financial data.

Book The Oxford Handbook of Applied Bayesian Analysis

Download or read book The Oxford Handbook of Applied Bayesian Analysis written by Anthony O' Hagan and published by OUP Oxford. This book was released on 2010-03-18 with total page 924 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian analysis has developed rapidly in applications in the last two decades and research in Bayesian methods remains dynamic and fast-growing. Dramatic advances in modelling concepts and computational technologies now enable routine application of Bayesian analysis using increasingly realistic stochastic models, and this drives the adoption of Bayesian approaches in many areas of science, technology, commerce, and industry. This Handbook explores contemporary Bayesian analysis across a variety of application areas. Chapters written by leading exponents of applied Bayesian analysis showcase the scientific ease and natural application of Bayesian modelling, and present solutions to real, engaging, societally important and demanding problems. The chapters are grouped into five general areas: Biomedical & Health Sciences; Industry, Economics & Finance; Environment & Ecology; Policy, Political & Social Sciences; and Natural & Engineering Sciences, and Appendix material in each touches on key concepts, models, and techniques of the chapter that are also of broader pedagogic and applied interest.

Book Empirical Asset Pricing

Download or read book Empirical Asset Pricing written by Turan G. Bali and published by John Wiley & Sons. This book was released on 2016-02-26 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Bali, Engle, and Murray have produced a highly accessible introduction to the techniques and evidence of modern empirical asset pricing. This book should be read and absorbed by every serious student of the field, academic and professional.” Eugene Fama, Robert R. McCormick Distinguished Service Professor of Finance, University of Chicago and 2013 Nobel Laureate in Economic Sciences “The empirical analysis of the cross-section of stock returns is a monumental achievement of half a century of finance research. Both the established facts and the methods used to discover them have subtle complexities that can mislead casual observers and novice researchers. Bali, Engle, and Murray’s clear and careful guide to these issues provides a firm foundation for future discoveries.” John Campbell, Morton L. and Carole S. Olshan Professor of Economics, Harvard University “Bali, Engle, and Murray provide clear and accessible descriptions of many of the most important empirical techniques and results in asset pricing.” Kenneth R. French, Roth Family Distinguished Professor of Finance, Tuck School of Business, Dartmouth College “This exciting new book presents a thorough review of what we know about the cross-section of stock returns. Given its comprehensive nature, systematic approach, and easy-to-understand language, the book is a valuable resource for any introductory PhD class in empirical asset pricing.” Lubos Pastor, Charles P. McQuaid Professor of Finance, University of Chicago Empirical Asset Pricing: The Cross Section of Stock Returns is a comprehensive overview of the most important findings of empirical asset pricing research. The book begins with thorough expositions of the most prevalent econometric techniques with in-depth discussions of the implementation and interpretation of results illustrated through detailed examples. The second half of the book applies these techniques to demonstrate the most salient patterns observed in stock returns. The phenomena documented form the basis for a range of investment strategies as well as the foundations of contemporary empirical asset pricing research. Empirical Asset Pricing: The Cross Section of Stock Returns also includes: Discussions on the driving forces behind the patterns observed in the stock market An extensive set of results that serve as a reference for practitioners and academics alike Numerous references to both contemporary and foundational research articles Empirical Asset Pricing: The Cross Section of Stock Returns is an ideal textbook for graduate-level courses in asset pricing and portfolio management. The book is also an indispensable reference for researchers and practitioners in finance and economics. Turan G. Bali, PhD, is the Robert Parker Chair Professor of Finance in the McDonough School of Business at Georgetown University. The recipient of the 2014 Jack Treynor prize, he is the coauthor of Mathematical Methods for Finance: Tools for Asset and Risk Management, also published by Wiley. Robert F. Engle, PhD, is the Michael Armellino Professor of Finance in the Stern School of Business at New York University. He is the 2003 Nobel Laureate in Economic Sciences, Director of the New York University Stern Volatility Institute, and co-founding President of the Society for Financial Econometrics. Scott Murray, PhD, is an Assistant Professor in the Department of Finance in the J. Mack Robinson College of Business at Georgia State University. He is the recipient of the 2014 Jack Treynor prize.

Book Bayesian Methods for Hackers

Download or read book Bayesian Methods for Hackers written by Cameron Davidson-Pilon and published by Addison-Wesley Professional. This book was released on 2015-09-30 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Book Handbook of Macroeconomics

Download or read book Handbook of Macroeconomics written by John B. Taylor and published by Elsevier. This book was released on 1999-12-13 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part 6: Financial Markets and the Macroeconomy. 19. Asset prices, consumption, and the business cycle (J.Y. Campbell). 20. Human behavior and the efficiency of the financial system (R.J. Shiller). 21. The financial accelerator in a quantitative business cycle framework (B. Bernanke, M. Gertler and S. Gilchrist). Part 7: Monetary and Fiscal Policy. 22. Political economics and macroeconomic policy (T. Persson, G. Tabellini). 23. Issues in the design of monetary policy rules (B.T. McCallum). 24. Inflation stabilization and BOP crises in developing countries (G.A. Calvo, C.A. Vegh). 25. Government debt (D.W. Elmendorf, N.G. Mankiw). 26. Optimal fiscal and monetary policy (V.V. Chari, P.J. Kehoe).

Book Uncertainty Within Economic Models

Download or read book Uncertainty Within Economic Models written by Lars Peter Hansen and published by World Scientific. This book was released on 2014-09-09 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by Lars Peter Hansen (Nobel Laureate in Economics, 2013) and Thomas Sargent (Nobel Laureate in Economics, 2011), Uncertainty within Economic Models includes articles adapting and applying robust control theory to problems in economics and finance. This book extends rational expectations models by including agents who doubt their models and adopt precautionary decisions designed to protect themselves from adverse consequences of model misspecification. This behavior has consequences for what are ordinarily interpreted as market prices of risk, but big parts of which should actually be interpreted as market prices of model uncertainty. The chapters discuss ways of calibrating agents' fears of model misspecification in quantitative contexts.

Book Handbook of Macroeconomics

    Book Details:
  • Author : Michael Woodford
  • Publisher : Elsevier
  • Release : 1999
  • ISBN : 9780444501561
  • Pages : 822 pages

Download or read book Handbook of Macroeconomics written by Michael Woodford and published by Elsevier. This book was released on 1999 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Machine Learning for Algorithmic Trading

Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Book Aanwinsten van de Centrale Bibliotheek  Queteletfonds

Download or read book Aanwinsten van de Centrale Bibliotheek Queteletfonds written by Bibliothèque centrale (Fonds Quetelet) and published by . This book was released on 2004 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: