Download or read book Artificial Intelligence in Theory and Practice IV written by Tharam Dillon and published by Springer. This book was released on 2015-10-02 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 4th IFIP TC 12 International Conference on Artificial Intelligence, IFIP AI 2015, Held as Part of WCC 2015, in Daejeon, South Korea, in October 2015. The 13 full papers presented were carefully reviewed and selected from 36 submissions. The papers are organized in topical sections on artificial intelligence techniques in biomedicine, artificial intelligence for knowledge management, computational intelligence and algorithms, and intelligent decision support systems.
Download or read book Artificial Intelligence written by Thomas L. Dean and published by Addison-Wesley Professional. This book was released on 1995 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed understanding of the broad issues in artificial intelligence and a survey of current AI technology. The author delivers broad coverage of innovative representational techniques, including neural networks, image processing and probabilistic reasoning, alongside the traditional methods of symbolic reasoning. The work is intended for students in artificial intelligence, researchers and LISP programmers.
Download or read book Automated Planning written by Malik Ghallab and published by Elsevier. This book was released on 2004-05-03 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description
Download or read book Artificial Intelligence in Medical Imaging written by Lia Morra and published by CRC Press. This book was released on 2019-11-25 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Choice Recommended Title, January 2021 This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective
Download or read book Machine Learning in Finance written by Matthew F. Dixon and published by Springer Nature. This book was released on 2020-07-01 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Download or read book Foundations of Machine Learning second edition written by Mehryar Mohri and published by MIT Press. This book was released on 2018-12-25 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.
Download or read book Artificial Intelligence written by Stuart Russell and published by Createspace Independent Publishing Platform. This book was released on 2016-09-10 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence: A Modern Approach offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence.
Download or read book Advances in Artificial Intelligence From Theory to Practice written by Salem Benferhat and published by Springer. This book was released on 2017-06-10 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNCS 10350 and 10351 constitutes the thoroughly refereed proceedings of the 30th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, held in Arras, France, in June 2017. The 70 revised full papers presented together with 45 short papers and 3 invited talks were carefully reviewed and selected from 180 submissions. They are organized in topical sections: constraints, planning, and optimization; data mining and machine learning; sensors, signal processing, and data fusion; recommender systems; decision support systems; knowledge representation and reasoning; navigation, control, and autonome agents; sentiment analysis and social media; games, computer vision; and animation; uncertainty management; graphical models: from theory to applications; anomaly detection; agronomy and artificial intelligence; applications of argumentation; intelligent systems in healthcare and mhealth for health outcomes; and innovative applications of textual analysis based on AI.
Download or read book Artificial Intelligence in Behavioral and Mental Health Care written by David D. Luxton and published by Academic Press. This book was released on 2015-09-10 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in Behavioral and Mental Health Care summarizes recent advances in artificial intelligence as it applies to mental health clinical practice. Each chapter provides a technical description of the advance, review of application in clinical practice, and empirical data on clinical efficacy. In addition, each chapter includes a discussion of practical issues in clinical settings, ethical considerations, and limitations of use. The book encompasses AI based advances in decision-making, in assessment and treatment, in providing education to clients, robot assisted task completion, and the use of AI for research and data gathering. This book will be of use to mental health practitioners interested in learning about, or incorporating AI advances into their practice and for researchers interested in a comprehensive review of these advances in one source. - Summarizes AI advances for use in mental health practice - Includes advances in AI based decision-making and consultation - Describes AI applications for assessment and treatment - Details AI advances in robots for clinical settings - Provides empirical data on clinical efficacy - Explores practical issues of use in clinical settings
Download or read book Artificial Intelligence in Medicine written by David Riaño and published by Springer. This book was released on 2019-06-19 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.
Download or read book Cooperative Information Agents IV The Future of Information Agents in Cyberspace written by Matthias Klusch and published by Springer. This book was released on 2004-02-12 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: These arethe proceedingsof the Fourth InternationalWorkshopon Cooperative Information Agents, held in Boston Massachusetts, USA, July 7-9, 2000. Cooperative information agent research and development focused originally onaccessingmultiple,heterogeneous,anddistributedinformationsources. Ga- ingaccesstothesesystems,throughInternetsearchengines,applicationprogram interfaces, wrappers, and web-based screens has been an important focus of - operative intelligent agents. Research has also focused on the integration of this information into a coherent model that combined data and knowledge from the multiple sources. Finally, this information is disseminated to a wide audience, giving rise to issues such as data quality, information pedigree, source reliability, information security, personal privacy, and information value. Research in - operative information agents has expanded to include agent negotiation, agent communities, agent mobility, as well as agent collaboration for information d- covery in constrained environments. TheinterdisciplinaryCIAworkshopseriesencompassesa widevarietyoft- ics dealing with cooperative information agents. All workshop proceedings have been published by Springer as Lecture Notes in Arti?cial Intelligence, Volumes 1202 (1997), 1435 (1998), and 1652 (1999), respectively. This year, the theme of the CIA workshop was ”’The Future of Information Agents in Cyberspace”, a very ?tting topic as the use of agents for information gathering, negotiation, correlation, fusion, and dissemination becomes ever more prevalent. We noted a marked trend in CIA 2000 towards addressing issues related to communities of agents that: (1) negotiate for information resources, (2) build robust ontologies to enhance search capabilities, (3) communicate for planning and problem so- ing, (4) learn and evolve based on their experiences, and (5) assume increasing degrees of autonomy in the control of complex systems.
Download or read book Machine Learning and Data Mining written by Ryszad S. Michalski and published by Wiley. This book was released on 1998-04-22 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the new computational tools to get the most out of your information system. This practical guide, the first to clearly outline the situation for the benefit of engineers and scientists, provides a straightforward introduction to basic machine learning and data mining methods, covering the analysis of numerical, text, and sound data.
Download or read book Artificial Intelligence written by David L. Poole and published by Cambridge University Press. This book was released on 2017-09-25 with total page 821 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence presents a practical guide to AI, including agents, machine learning and problem-solving simple and complex domains.
Download or read book Introduction to Machine Learning written by Ethem Alpaydin and published by MIT Press. This book was released on 2014-08-22 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.
Download or read book Affect and Artificial Intelligence written by Elizabeth A. Wilson and published by University of Washington Press. This book was released on 2011-03-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1950, Alan Turing, the British mathematician, cryptographer, and computer pioneer, looked to the future: now that the conceptual and technical parameters for electronic brains had been established, what kind of intelligence could be built? Should machine intelligence mimic the abstract thinking of a chess player or should it be more like the developing mind of a child? Should an intelligent agent only think, or should it also learn, feel, and grow? Affect and Artificial Intelligence is the first in-depth analysis of affect and intersubjectivity in the computational sciences. Elizabeth Wilson makes use of archival and unpublished material from the early years of AI (1945–70) until the present to show that early researchers were more engaged with questions of emotion than many commentators have assumed. She documents how affectivity was managed in the canonical works of Walter Pitts in the 1940s and Turing in the 1950s, in projects from the 1960s that injected artificial agents into psychotherapeutic encounters, in chess-playing machines from the 1940s to the present, and in the Kismet (sociable robotics) project at MIT in the 1990s.
Download or read book Theory and Practice of Business Intelligence in Healthcare written by Khuntia, Jiban and published by IGI Global. This book was released on 2019-12-27 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Business intelligence supports managers in enterprises to make informed business decisions in various levels and domains such as in healthcare. These technologies can handle large structured and unstructured data (big data) in the healthcare industry. Because of the complex nature of healthcare data and the significant impact of healthcare data analysis, it is important to understand both the theories and practices of business intelligence in healthcare. Theory and Practice of Business Intelligence in Healthcare is a collection of innovative research that introduces data mining, modeling, and analytic techniques to health and healthcare data; articulates the value of big volumes of data to health and healthcare; evaluates business intelligence tools; and explores business intelligence use and applications in healthcare. While highlighting topics including digital health, operations intelligence, and patient empowerment, this book is ideally designed for healthcare professionals, IT consultants, hospital directors, data management staff, data analysts, hospital administrators, executives, managers, academicians, students, and researchers seeking current research on the digitization of health records and health systems integration.