Download or read book Computational and Data Driven Chemistry Using Artificial Intelligence written by Takashiro Akitsu and published by Elsevier. This book was released on 2021-10-08 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational and Data-Driven Chemistry Using Artificial Intelligence: Volume 1: Fundamentals, Methods and Applications highlights fundamental knowledge and current developments in the field, giving readers insight into how these tools can be harnessed to enhance their own work. Offering the ability to process large or complex data-sets, compare molecular characteristics and behaviors, and help researchers design or identify new structures, Artificial Intelligence (AI) holds huge potential to revolutionize the future of chemistry. Volume 1 explores the fundamental knowledge and current methods being used to apply AI across a whole host of chemistry applications. Drawing on the knowledge of its expert team of global contributors, the book offers fascinating insight into this rapidly developing field and serves as a great resource for all those interested in exploring the opportunities afforded by the intersection of chemistry and AI in their own work. Part 1 provides foundational information on AI in chemistry, with an introduction to the field and guidance on database usage and statistical analysis to help support newcomers to the field. Part 2 then goes on to discuss approaches currently used to address problems in broad areas such as computational and theoretical chemistry; materials, synthetic and medicinal chemistry; crystallography, analytical chemistry, and spectroscopy. Finally, potential future trends in the field are discussed. - Provides an accessible introduction to the current state and future possibilities for AI in chemistry - Explores how computational chemistry methods and approaches can both enhance and be enhanced by AI - Highlights the interdisciplinary and broad applicability of AI tools across a wide range of chemistry fields
Download or read book Applications of Artificial Intelligence in Chemistry written by Hugh M. Cartwright and published by Oxford University Press on Demand. This book was released on 1993 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is clear that the techniques of artificial intelligence are useful for more than just the development of thinking machines; they constitute powerful problem-solving tools in their own right and expand the range of problems in science that can be tackled. AI methods can now be used on a routine basis by scientists in academic research as well as the commercial world, it is therefore vital that science students are exposed to, and understand these techniques. This is the first book topresent an introduction to AI methods for science undergraduates. The examples are drawn mainly from chemistry but the book is suited to a general scientific audience wanting to know more about how computers can help to understand and interpret science.
Download or read book Applications of Artificial Intelligence in Process Systems Engineering written by Jingzheng Ren and published by Elsevier. This book was released on 2021-06-05 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Download or read book Machine Learning in Chemistry written by Hugh M. Cartwright and published by Royal Society of Chemistry. This book was released on 2020-07-15 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field.
Download or read book Machine Learning in Chemistry written by Jon Paul Janet and published by American Chemical Society. This book was released on 2020-05-28 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important
Download or read book Artificial Intelligence in Chemistry written by José S. Torrecilla and published by Frontiers Media SA. This book was released on 2020-07-17 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Applications of Artificial Intelligence for Organic Chemistry written by Robert K. Lindsay and published by McGraw-Hill Companies. This book was released on 1980 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Artificial Intelligence in Chemical Engineering written by Thomas E. Quantrille and published by Elsevier. This book was released on 2012-12-02 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence (AI) is the part of computer science concerned with designing intelligent computer systems (systems that exhibit characteristics we associate with intelligence in human behavior). This book is the first published textbook of AI in chemical engineering, and provides broad and in-depth coverage of AI programming, AI principles, expert systems, and neural networks in chemical engineering. This book introduces the computational means and methodologies that are used to enable computers to perform intelligent engineering tasks. A key goal is to move beyond the principles of AI into its applications in chemical engineering. After reading this book, a chemical engineer will have a firm grounding in AI, know what chemical engineering applications of AI exist today, and understand the current challenges facing AI in engineering. - Allows the reader to learn AI quickly using inexpensive personal computers - Contains a large number of illustrative examples, simple exercises, and complex practice problems and solutions - Includes a computer diskette for an illustrated case study - Demonstrates an expert system for separation synthesis (EXSEP) - Presents a detailed review of published literature on expert systems and neural networks in chemical engineering
Download or read book Artificial Intelligence in Drug Discovery written by Nathan Brown and published by Royal Society of Chemistry. This book was released on 2020-11-04 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Download or read book Using Artificial Intelligence in Chemistry and Biology written by Hugh Cartwright and published by CRC Press. This book was released on 2008-05-05 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Possessing great potential power for gathering and managing data in chemistry, biology, and other sciences, Artificial Intelligence (AI) methods are prompting increased exploration into the most effective areas for implementation. A comprehensive resource documenting the current state-of-the-science and future directions of the field is required to
Download or read book Artificial Intelligence for Materials Science written by Yuan Cheng and published by Springer Nature. This book was released on 2021-03-26 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborative tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field. Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years. This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With content relevant to both academic and commercial points of view, and offering an accessible overview of recent progress and potential future directions, the book will interest graduate students, postgraduate researchers, and consultants and industrial engineers.
Download or read book Machine Learning in Chemistry written by Edward O. Pyzer-Knapp and published by . This book was released on 2020-10-22 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic-scale representation and statistical learning of tensorial properties -- Prediction of Mohs hardness with machine learning methods using compositional features -- High-dimensional neural network potentials for atomistic simulations -- Data-driven learning systems for chemical reaction prediction: an analysis of recent approaches -- Using machine learning to inform decisions in drug discovery : an industry perspective -- Cognitive materials discovery and onset of the 5th discovery paradigm.
Download or read book Knowledge based Expert Systems in Chemistry written by Philip Judson and published by Royal Society of Chemistry. This book was released on 2019-02-07 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition has been thoroughly revised and updated to reflect the advances in using knowledge-based expert systems for chemistry.
Download or read book Artificial Intelligence Applications in Chemistry written by Thomas H. Pierce and published by . This book was released on 1986 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Applications of Artificial Intelligence Techniques in the Petroleum Industry written by Abdolhossein Hemmati-Sarapardeh and published by Gulf Professional Publishing. This book was released on 2020-08-26 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Artificial Intelligence Techniques in the Petroleum Industry gives engineers a critical resource to help them understand the machine learning that will solve specific engineering challenges. The reference begins with fundamentals, covering preprocessing of data, types of intelligent models, and training and optimization algorithms. The book moves on to methodically address artificial intelligence technology and applications by the upstream sector, covering exploration, drilling, reservoir and production engineering. Final sections cover current gaps and future challenges. - Teaches how to apply machine learning algorithms that work best in exploration, drilling, reservoir or production engineering - Helps readers increase their existing knowledge on intelligent data modeling, machine learning and artificial intelligence, with foundational chapters covering the preprocessing of data and training on algorithms - Provides tactics on how to cover complex projects such as shale gas, tight oils, and other types of unconventional reservoirs with more advanced model input
Download or read book Artificial Intelligence in Drug Design written by Alexander Heifetz and published by Humana. This book was released on 2022-11-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume looks at applications of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in drug design. The chapters in this book describe how AI/ML/DL approaches can be applied to accelerate and revolutionize traditional drug design approaches such as: structure- and ligand-based, augmented and multi-objective de novo drug design, SAR and big data analysis, prediction of binding/activity, ADMET, pharmacokinetics and drug-target residence time, precision medicine and selection of favorable chemical synthetic routes. How broadly are these approaches applied and where do they maximally impact productivity today and potentially in the near future. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique, Artificial Intelligence in Drug Design is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists and drug designers.
Download or read book Quantum Chemistry in the Age of Machine Learning written by Pavlo O. Dral and published by Elsevier. This book was released on 2022-09-16 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum chemistry is simulating atomistic systems according to the laws of quantum mechanics, and such simulations are essential for our understanding of the world and for technological progress. Machine learning revolutionizes quantum chemistry by increasing simulation speed and accuracy and obtaining new insights. However, for nonspecialists, learning about this vast field is a formidable challenge. Quantum Chemistry in the Age of Machine Learning covers this exciting field in detail, ranging from basic concepts to comprehensive methodological details to providing detailed codes and hands-on tutorials. Such an approach helps readers get a quick overview of existing techniques and provides an opportunity to learn the intricacies and inner workings of state-of-the-art methods. The book describes the underlying concepts of machine learning and quantum chemistry, machine learning potentials and learning of other quantum chemical properties, machine learning-improved quantum chemical methods, analysis of Big Data from simulations, and materials design with machine learning. Drawing on the expertise of a team of specialist contributors, this book serves as a valuable guide for both aspiring beginners and specialists in this exciting field. - Compiles advances of machine learning in quantum chemistry across different areas into a single resource - Provides insights into the underlying concepts of machine learning techniques that are relevant to quantum chemistry - Describes, in detail, the current state-of-the-art machine learning-based methods in quantum chemistry