EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book ARPACK Users  Guide

    Book Details:
  • Author : Richard B. Lehoucq
  • Publisher : SIAM
  • Release : 1998-01-01
  • ISBN : 0898714079
  • Pages : 150 pages

Download or read book ARPACK Users Guide written by Richard B. Lehoucq and published by SIAM. This book was released on 1998-01-01 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a guide to understanding and using the software package ARPACK to solve large algebraic eigenvalue problems. The software described is based on the implicitly restarted Arnoldi method, which has been heralded as one of the three most important advances in large scale eigenanalysis in the past ten years. The book explains the acquisition, installation, capabilities, and detailed use of the software for computing a desired subset of the eigenvalues and eigenvectors of large (sparse) standard or generalized eigenproblems. It also discusses the underlying theory and algorithmic background at a level that is accessible to the general practitioner.

Book LAPACK95 Users  Guide

Download or read book LAPACK95 Users Guide written by V. A. Barker and published by SIAM. This book was released on 2001-01-01 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: LAPACK95 is a Fortran 95 interface to the Fortran 77 LAPACK library. It is relevant for anyone who writes in the Fortran 95 language and needs reliable software for basic numerical linear algebra. It improves upon the original user-interface to the LAPACK package, taking advantage of the considerable simplifications that Fortran 95 allows. LAPACK95 Users' Guide provides an introduction to the design of the LAPACK95 package, a detailed description of its contents, reference manuals for the leading comments of the routines, and example programs.

Book ScaLAPACK Users  Guide

Download or read book ScaLAPACK Users Guide written by L. S. Blackford and published by SIAM. This book was released on 1997-01-01 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: ScaLAPACK is an acronym for Scalable Linear Algebra Package or Scalable LAPACK. It is a library of high-performance linear algebra routines for distributed memory message-passing MIMD computers and networks of workstations supporting parallel virtual machine (PVM) and/or message passing interface (MPI). It is a continuation of the LAPACK project, which designed and produced analogous software for workstations, vector supercomputers, and shared memory parallel computers. Both libraries contain routines for solving systems of linear equations, least squares problems, and eigenvalue problems. The goals of both projects are efficiency, scalability, reliability, portability, flexibility, and ease of use. ScaLAPACK includes routines for the solution of dense, band, and tridiagonal linear systems of equations, condition estimation and iterative refinement, for LU and Cholesky factorization, matrix inversion, full-rank linear least squares problems, orthogonal and generalized orthogonal factorizations, orthogonal transformation routines, reductions to upper Hessenberg, bidiagonal and tridiagonal form, reduction of a symmetric-definite/ Hermitian-definite generalized eigenproblem to standard form, the symmetric/Hermitian, generalized symmetric/Hermitian, and nonsymmetric eigenproblem, and the singular value decomposition. Prototype codes are provided for out-of-core linear solvers for LU, Cholesky, and QR, the matrix sign function for eigenproblems, an HPF interface to a subset of ScaLAPACK routines, and SuperLU. Software is available in single-precision real, double-precision real, single-precision complex, and double-precision complex. The software has been written to be portable across a wide range of distributed-memory environments such as the Cray T3, IBM SP, Intel series, TM CM-5, networks of workstations, and any system for which PVM or MPI is available. Each Users' Guide includes a CD-ROM containing the HTML version of the ScaLAPACK Users' Guide, the source code for ScaLAPACK and LAPACK, testing and timing programs, prebuilt versions of the library for a number of computers, example programs, and the full set of LAPACK Working Notes.

Book LAPACK Users  Guide

Download or read book LAPACK Users Guide written by E. Anderson and published by SIAM. This book was released on 1999-01-01 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: LAPACK is a library of numerical linear algebra subroutines designed for high performance on workstations, vector computers, and shared memory multiprocessors. Release 3.0 of LAPACK introduces new routines and extends the functionality of existing routines. The most significant new routines and functions include: 1. a faster singular value decomposition computed by divide-and-conquer 2. faster routines for solving rank-deficient least squares problems: Using QR with column pivoting using the SVD based on divide-and-conquer 3. new routines for the generalized symmetric eigenproblem: faster routines based on divide-and-conquer routines based on bisection/inverse iteration, for computing part of the spectrum 4. faster routine for the symmetric eigenproblem using "relatively robust eigenvector algorithm" 5. new simple and expert drivers for the generalized nonsymmetric eigenproblem, including error bounds 6. solver for generalized Sylvester equation, used in 5 7.computational routines used in 5 Each Users' Guide comes with a 'Quick Reference Guide' card.

Book A Tutorial on Elliptic PDE Solvers and Their Parallelization

Download or read book A Tutorial on Elliptic PDE Solvers and Their Parallelization written by Craig C. Douglas and published by SIAM. This book was released on 2003-01-01 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Tutorial on Elliptic PDE Solvers and Their Parallelization is a valuable aid for learning about the possible errors and bottlenecks in parallel computing. One of the highlights of the tutorial is that the course material can run on a laptop, not just on a parallel computer or cluster of PCs, thus allowing readers to experience their first successes in parallel computing in a relatively short amount of time. This tutorial is intended for advanced undergraduate and graduate students in computational sciences and engineering; however, it may also be helpful to professionals who use PDE-based parallel computer simulations in the field.

Book Handbook of Linear Algebra  Second Edition

Download or read book Handbook of Linear Algebra Second Edition written by Leslie Hogben and published by CRC Press. This book was released on 2013-11-26 with total page 1906 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations of quivers, and spectral sets New chapters on combinatorial matrix theory topics, such as tournaments, the minimum rank problem, and spectral graph theory, as well as numerical linear algebra topics, including algorithms for structured matrix computations, stability of structured matrix computations, and nonlinear eigenvalue problems More chapters on applications of linear algebra, including epidemiology and quantum error correction New chapter on using the free and open source software system Sage for linear algebra Additional sections in the chapters on sign pattern matrices and applications to geometry Conjectures and open problems in most chapters on advanced topics Highly praised as a valuable resource for anyone who uses linear algebra, the first edition covered virtually all aspects of linear algebra and its applications. This edition continues to encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, and applications of linear algebra to various disciplines while also covering up-to-date software packages for linear algebra computations.

Book The Lanczos Method

Download or read book The Lanczos Method written by Louis Komzsik and published by SIAM. This book was released on 2003-01-01 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable reference on the Lanczos method for graduate numerical analysts and engineers.

Book Handbook of Linear Algebra

Download or read book Handbook of Linear Algebra written by Leslie Hogben and published by CRC Press. This book was released on 2006-11-02 with total page 1402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessibl

Book Graph Algorithms in the Language of Linear Algebra

Download or read book Graph Algorithms in the Language of Linear Algebra written by Jeremy Kepner and published by SIAM. This book was released on 2011-08-04 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to graph algorithms accessible to those without a computer science background.

Book Lectures on Finite Precision Computations

Download or read book Lectures on Finite Precision Computations written by Francoise Chaitin-Chatelin and published by SIAM. This book was released on 1996-01-01 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Numerical Analysis.

Book Handbook of Parallel Computing and Statistics

Download or read book Handbook of Parallel Computing and Statistics written by Erricos John Kontoghiorghes and published by CRC Press. This book was released on 2005-12-21 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technological improvements continue to push back the frontier of processor speed in modern computers. Unfortunately, the computational intensity demanded by modern research problems grows even faster. Parallel computing has emerged as the most successful bridge to this computational gap, and many popular solutions have emerged based on its concepts

Book Templates for the Solution of Algebraic Eigenvalue Problems

Download or read book Templates for the Solution of Algebraic Eigenvalue Problems written by Zhaojun Bai and published by SIAM. This book was released on 2000-01-01 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-scale problems of engineering and scientific computing often require solutions of eigenvalue and related problems. This book gives a unified overview of theory, algorithms, and practical software for eigenvalue problems. It organizes this large body of material to make it accessible for the first time to the many nonexpert users who need to choose the best state-of-the-art algorithms and software for their problems. Using an informal decision tree, just enough theory is introduced to identify the relevant mathematical structure that determines the best algorithm for each problem.

Book A Software Repository for Orthogonal Polynomials

Download or read book A Software Repository for Orthogonal Polynomials written by Walter Gautschi and published by SIAM. This book was released on 2018 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Software Repository for Orthogonal Polynomials is the first book that provides graphs and references to online datasets that enable the generation of a large number of orthogonal polynomials with classical, quasi-classical, and nonclassical weight functions. Useful numerical tables are also included. The book will be of interest to scientists, engineers, applied mathematicians, and statisticians.

Book Progress in Industrial Mathematics at ECMI 2004

Download or read book Progress in Industrial Mathematics at ECMI 2004 written by Alessandro Di Bucchianico and published by Springer Science & Business Media. This book was released on 2006-01-09 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: ECMI has a brand name in Industrial Mathematics and organises successful biannual conferences. This time, the conference on Industrial Mathematics held in Eindhoven in June 2004 Mathematics focused on Aerospace, Electronic Industry, Chemical Technology, Life Sciences, Materials, Geophysics, Financial Mathematics and Water flow. The majority of the invited talks on these topics can be found in these proceedings. Apart from these lectures, a large number of contributed papers and minisymposium papers are included here. They give an interesting (and impressive) overview of the important place mathematics has achieved in solving all kinds of problems met in industry, and commerce in particular.

Book A Software Repository for Gaussian Quadratures and Christoffel Functions

Download or read book A Software Repository for Gaussian Quadratures and Christoffel Functions written by Walter Gautschi and published by SIAM. This book was released on 2020-10-30 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This companion piece to the author’s 2018 book, A Software Repository for Orthogonal Polynomials, focuses on Gaussian quadrature and the related Christoffel function. The book makes Gauss quadrature rules of any order easily accessible for a large variety of weight functions and for arbitrary precision. It also documents and illustrates known as well as original approximations for Gauss quadrature weights and Christoffel functions. The repository contains 60+ datasets, each dealing with a particular weight function. Included are classical, quasi-classical, and, most of all, nonclassical weight functions and associated orthogonal polynomials. Scientists, engineers, applied mathematicians, and statisticians will find the book of interest.

Book PETSc for Partial Differential Equations  Numerical Solutions in C and Python

Download or read book PETSc for Partial Differential Equations Numerical Solutions in C and Python written by Ed Bueler and published by SIAM. This book was released on 2020-10-22 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.

Book Simulating  Analyzing  and Animating Dynamical Systems

Download or read book Simulating Analyzing and Animating Dynamical Systems written by Bard Ermentrout and published by SIAM. This book was released on 2002-01-01 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students provides sophisticated numerical methods for the fast and accurate solution of a variety of equations, including ordinary differential equations, delay equations, integral equations, functional equations, and some partial differential equations, as well as boundary value problems. It introduces many modeling techniques and methods for analyzing the resulting equations. Instructors, students, and researchers will all benefit from this book, which demonstrates how to use software tools to simulate and study sets of equations that arise in a variety of applications. Instructors will learn how to use computer software in their differential equations and modeling classes, while students will learn how to create animations of their equations that can be displayed on the World Wide Web. Researchers will be introduced to useful tricks that will allow them to take full advantage of XPPAUT's capabilities.