EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Approximation Methods for Solutions of Differential and Integral Equations

Download or read book Approximation Methods for Solutions of Differential and Integral Equations written by V. K. Dzyadyk and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-05 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Approximation Methods for Solutions of Differential and Integral Equations".

Book Analysis of Approximation Methods for Differential and Integral Equations

Download or read book Analysis of Approximation Methods for Differential and Integral Equations written by Hans-Jürgen Reinhardt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is primarily based on the research done by the Numerical Analysis Group at the Goethe-Universitat in Frankfurt/Main, and on material presented in several graduate courses by the author between 1977 and 1981. It is hoped that the text will be useful for graduate students and for scientists interested in studying a fundamental theoretical analysis of numerical methods along with its application to the most diverse classes of differential and integral equations. The text treats numerous methods for approximating solutions of three classes of problems: (elliptic) boundary-value problems, (hyperbolic and parabolic) initial value problems in partial differential equations, and integral equations of the second kind. The aim is to develop a unifying convergence theory, and thereby prove the convergence of, as well as provide error estimates for, the approximations generated by specific numerical methods. The schemes for numerically solving boundary-value problems are additionally divided into the two categories of finite difference methods and of projection methods for approximating their variational formulations.

Book Semi Lagrangian Approximation Schemes for Linear and Hamilton Jacobi Equations

Download or read book Semi Lagrangian Approximation Schemes for Linear and Hamilton Jacobi Equations written by Maurizio Falcone and published by SIAM. This book was released on 2014-01-31 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This largely self-contained book provides a unified framework of semi-Lagrangian strategy for the approximation of hyperbolic PDEs, with a special focus on Hamilton-Jacobi equations. The authors provide a rigorous discussion of the theory of viscosity solutions and the concepts underlying the construction and analysis of difference schemes; they then proceed to high-order semi-Lagrangian schemes and their applications to problems in fluid dynamics, front propagation, optimal control, and image processing. The developments covered in the text and the references come from a wide range of literature.

Book Equations Involving Malliavin Calculus Operators

Download or read book Equations Involving Malliavin Calculus Operators written by Tijana Levajković and published by Springer. This book was released on 2017-08-31 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and unified introduction to stochastic differential equations and related optimal control problems. The material is new and the presentation is reader-friendly. A major contribution of the book is the development of generalized Malliavin calculus in the framework of white noise analysis, based on chaos expansion representation of stochastic processes and its application for solving several classes of stochastic differential equations with singular data involving the main operators of Malliavin calculus. In addition, applications in optimal control and numerical approximations are discussed. The book is divided into four chapters. The first, entitled White Noise Analysis and Chaos Expansions, includes notation and provides the reader with the theoretical background needed to understand the subsequent chapters. In Chapter 2, Generalized Operators of Malliavin Calculus, the Malliavin derivative operator, the Skorokhod integral and the Ornstein-Uhlenbeck operator are introduced in terms of chaos expansions. The main properties of the operators, which are known in the literature for the square integrable processes, are proven using the chaos expansion approach and extended for generalized and test stochastic processes. Chapter 3, Equations involving Malliavin Calculus operators, is devoted to the study of several types of stochastic differential equations that involve the operators of Malliavin calculus, introduced in the previous chapter. Fractional versions of these operators are also discussed. Finally, in Chapter 4, Applications and Numerical Approximations are discussed. Specifically, we consider the stochastic linear quadratic optimal control problem with different forms of noise disturbances, operator differential algebraic equations arising in fluid dynamics, stationary equations and fractional versions of the equations studied – applications never covered in the extant literature. Moreover, numerical validations of the method are provided for specific problems."

Book Approximations successives et   quations diff  rentielles

Download or read book Approximations successives et quations diff rentielles written by Emile Cotton and published by . This book was released on 1928 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Convergence  Approximation  and Differential Equations

Download or read book Convergence Approximation and Differential Equations written by Eugene A. Herman and published by John Wiley & Sons. This book was released on 1986 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new approach to the teaching of undergraduate level mathematics that includes topics from numerical analysis, calculus and differential equations. It stresses a modern viewpoint, combining both computational and theoretical aspects that will help students use the computer as a daily tool as well as aid them in the understanding of basic theoretical concepts. Numerous examples, applications and exercise sets are also included in the text.

Book Yosida Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications

Download or read book Yosida Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications written by T. E. Govindan and published by Springer. This book was released on 2016-11-11 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research monograph brings together, for the first time, the varied literature on Yosida approximations of stochastic differential equations (SDEs) in infinite dimensions and their applications into a single cohesive work. The author provides a clear and systematic introduction to the Yosida approximation method and justifies its power by presenting its applications in some practical topics such as stochastic stability and stochastic optimal control. The theory assimilated spans more than 35 years of mathematics, but is developed slowly and methodically in digestible pieces. The book begins with a motivational chapter that introduces the reader to several different models that play recurring roles throughout the book as the theory is unfolded, and invites readers from different disciplines to see immediately that the effort required to work through the theory that follows is worthwhile. From there, the author presents the necessary prerequisite material, and then launches the reader into the main discussion of the monograph, namely, Yosida approximations of SDEs, Yosida approximations of SDEs with Poisson jumps, and their applications. Most of the results considered in the main chapters appear for the first time in a book form, and contain illustrative examples on stochastic partial differential equations. The key steps are included in all proofs, especially the various estimates, which help the reader to get a true feel for the theory of Yosida approximations and their use. This work is intended for researchers and graduate students in mathematics specializing in probability theory and will appeal to numerical analysts, engineers, physicists and practitioners in finance who want to apply the theory of stochastic evolution equations. Since the approach is based mainly in semigroup theory, it is amenable to a wide audience including non-specialists in stochastic processes.

Book Delay Equations  Approximation and Application

Download or read book Delay Equations Approximation and Application written by MEINARDUS and published by Birkhäuser. This book was released on 2013-03-08 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: The international symposium held in October 1984 at the Uni versity of Mannheim was the first with the special aim to expose the connection of the Theory of Delay Eauations and Approximation Theory with the emphasis on constructive methods and applications. Although the separate character of both domains is reflected by their historical development, the latest research shows that the numerical treatment of Delay Equations leads to various appro ximation and optimization problems. An introductory survey of this circle of problems written by the editors is included at the beginning of the book. Delay Equations have their origin in domains of applications, such as physics, engineering, biology, medicine and economics. They appear in connection with the fundamental problem to analyse a retarded process from the real world, to develop a corresponding mathematical model and to determine the future behavior. Thirty mathematicians attended the conference coming from Germany, West- and Eastern Europe and the United States- more than twenty of them presented a research talk. The lectures about Delay Equations were mainly oriented on the following subjects: single-step, multi-step and spline methods; monotonicity methods for error estimations; asymptotic behavior 10 and periodicity of solutions. The topics of the talks on Approxi mation Theory covered different aspects of approximation by poly nomials, splines and rational functions and their numerical rea lization. Additionally included in the scientific program was a special session on Open Problems, where several suggestions were made for further research concerning both fields.

Book Taylor Approximations for Stochastic Partial Differential Equations

Download or read book Taylor Approximations for Stochastic Partial Differential Equations written by Arnulf Jentzen and published by SIAM. This book was released on 2011-01-01 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with Hl̲der continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.

Book Strong and Weak Approximation of Semilinear Stochastic Evolution Equations

Download or read book Strong and Weak Approximation of Semilinear Stochastic Evolution Equations written by Raphael Kruse and published by Springer. This book was released on 2013-11-18 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we analyze the error caused by numerical schemes for the approximation of semilinear stochastic evolution equations (SEEq) in a Hilbert space-valued setting. The numerical schemes considered combine Galerkin finite element methods with Euler-type temporal approximations. Starting from a precise analysis of the spatio-temporal regularity of the mild solution to the SEEq, we derive and prove optimal error estimates of the strong error of convergence in the first part of the book. The second part deals with a new approach to the so-called weak error of convergence, which measures the distance between the law of the numerical solution and the law of the exact solution. This approach is based on Bismut’s integration by parts formula and the Malliavin calculus for infinite dimensional stochastic processes. These techniques are developed and explained in a separate chapter, before the weak convergence is proven for linear SEEq.

Book Nonlinear Ordinary Differential Equations

Download or read book Nonlinear Ordinary Differential Equations written by Martin Hermann and published by Springer. This book was released on 2016-05-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.

Book Linear Partial Differential Equations with Constant Coefficients

Download or read book Linear Partial Differential Equations with Constant Coefficients written by Francois Treves and published by CRC Press. This book was released on 1966 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Existence and approximation theorems for general differential operators -- General L2 estimates -- Fundamental solutions -- The approximation theorem -- Existence theorems for differential operators with constant coefficients -- Convexity with respect to a differential polynomial -- Interior regularity of solutions -- Partial hypoellipticity -- Existence and approximation theorems in spaces of analytic functions -- Appendix A. Semi-algebraic sets -- Appendix B. On uniqueness in the Cauchy problem -- Appendix C. Some formulas of non-commutative algebra.

Book Functional Differential Equations and Approximation of Fixed Points

Download or read book Functional Differential Equations and Approximation of Fixed Points written by H.-O. Peitgen and published by Springer. This book was released on 2006-11-15 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dedicated to Heinz Unger on occasion of his 65. birthday

Book On the Convergence of Discrete Approximations to the Navier Stokes Equations  Classic Reprint

Download or read book On the Convergence of Discrete Approximations to the Navier Stokes Equations Classic Reprint written by Alexandre Joel Chorin and published by Forgotten Books. This book was released on 2017-12-19 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excerpt from On the Convergence of Discrete Approximations to the Navier-Stokes Equations In the present paper we shall adopt a different point of view. We shall assume that the differential equations have a solution with a certain number of continuous derivatives. Armed with this knowledge, we shall study difference schemes which are not merely usable, but even efficient. The methods analyzed are based on the following observations: Equation (1) About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.

Book Polynomial Approximation of Differential Equations

Download or read book Polynomial Approximation of Differential Equations written by Daniele Funaro and published by Springer Science & Business Media. This book was released on 2008-10-04 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.

Book Numerical Approximation of Partial Differential Equations

Download or read book Numerical Approximation of Partial Differential Equations written by Alfio Quarteroni and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).

Book Numerical Analysis of Partial Differential Equations

Download or read book Numerical Analysis of Partial Differential Equations written by Jacques Louis Lions and published by Springer Science & Business Media. This book was released on 2011-06-07 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: S. Albertoni: Alcuni metodi di calcolo nella teoria della diffusione dei neutroni.- I. Babuska: Optimization and numerical stability in computations.- J.H. Bramble: Error estimates in elliptic boundary value problems.- G. Capriz: The numerical approach to hydrodynamic problems.- A. Dou: Energy inequalities in an elastic cylinder.- T. Doupont: On the existence of an iterative method for the solution of elliptic difference equation with an improved work estimate.- J. Douglas, J.R. Cannon: The approximation of harmonic and parabolic functions of half-spaces from interior data.- B.E. Hubbard: Error estimates in the fixed Membrane problem.- K. Jorgens: Calculation of the spectrum of a Schrödinger operator.- A. Lasota: Contingent equations and boundary value problems.- J.L. Lions: Réduction à des problèmes du type Cauchy-Kowalewska.- J.L. Lions: Problèmes aux limites non homogènes à données irrégulières; une méthode d’approximation.- J.L. Lions: Remarques sur l’approximation régularisée de problèmes aux limites.- W.V. Petryshyn: On the approximation-solvability of nonlinear functional equations in normed linear spaces.- P.A. Raviart: Approximation des équations d’évolution par des méthodes variationnelles.- M. Sibony, H. Brezis: Méthodes d’approximation et d’itération pour les operateurs monotones.- V. Thomee: Some topics in stability theory for partial difference operators.