EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Approach to Control  Protect and Switch Charge Transport Through Molecular Junctions and Atomic Contact

Download or read book Approach to Control Protect and Switch Charge Transport Through Molecular Junctions and Atomic Contact written by Yong Ai and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular electronics has attracted increasing interest in the past decades. Constructing metal/molecules/metal junctions is a basic step towards the investigation of molecular electronics. We have witnessed significant development in both experiment and theory in molecular junctions. This thesis focuses mainly on the study of charge transport through molecular junctions. Conducting polymers and copper filaments were electrochemically deposited with a scanning electrochemical microscope (SECM) configuration between a tip and a substrate electrode. In doing so, we have developed a new way to fabricate atomic contact and molecular junctions, and we have explored the possibility to control, protect and switch these systems.Firstly, SECM, where two microelectrodes are located face-to-face separated by a micrometric gap, has been successfully used for the fabrication of redox-gated conducting polymers junctions, such as PEDOT and PBT. Highly stable and reversible redox-gated nano-junctions were obtained with conductance in the 10-7-10-8 S range in their conducting states. These results, associated with the wire-like growth of the polymer, suggest that the conductance of the entire junction in the conductive state is governed by less than 20 to 100 oligomers.Secondly, to obtain the nano-junctions in a controllable way, a break junction strategy combined with the SECM set up is adopted. A nano-junction could be acquired by pulling the tip away from its initial position. And conductance traces showed that PEDOT junctions can be broken step by step before complete breakdown. Similarly as STM-BJ conductance steps were observed on a PEDOT molecular junction before break down by using SECM-BJ. SECM break junction technique proved to be an efficient way of molecular junction fabrication studies, especially for redox gated polymer molecular junctions. Moreover, a self-terminated strategy is found to be another way to obtain nano-junctions. An external resistance connected to the electrode plays an important role in controlling the size of conducting polymer junctions.PFTQ and PFETQ molecular junctions exhibit well-defined ambipolar transport properties. However, an unbalanced charge transport properties in n- and p- channel for these two polymer junctions was observed when the junctions are in the fiber device scale. In contrast, when molecular junction changes into nano-junction, a balanced n- and p-channel transport property is acquired. We propose that such effect is due to charge transport mechanism changing from diffusive (ohm's law) to ballistic (quantum theory) when the junction size is reduced from fiber devices to nanodevices.High stable Au NPs/ITO electrodes exhibit a well localized surface plasmon (LSP) behavior. These plasmonic substrates have been successfully used to trigger switching of molecular junctions under light irradiation, demonstrating that surface plasmon resonance can induce electrochemical reduction. Such conductance reduction can be attributed to the hot electrons plasmonically generated from gold nanoparticles trapped into the PEDOT junction, resulting in PEDOT being reduced and changed to an insulating state.Finally, copper metallic nanowires were generated using an electrochemical self-terminated method based on SECM configuration. The presence of a few atoms that control the electron transport highlights the formation of metallic nanowires between the asymmetric electrodes. Furthermore, a similar study was performed on mesoporous silica film on ITO used as a substrate electrode. The mesoporous silica films have vertically aligned channels with a diameter of about 3 nm and a thickness of 115 nm, which play a crucial role in protecting the copper filament.

Book Charge and Exciton Transport through Molecular Wires

Download or read book Charge and Exciton Transport through Molecular Wires written by Laurens D. A. Siebbeles and published by John Wiley & Sons. This book was released on 2011-07-18 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: As functional elements in opto-electronic devices approach the singlemolecule limit, conducting organic molecular wires are the appropriate interconnects that enable transport of charges and charge-like particles such as excitons within the device. Reproducible syntheses and a thorough understanding of the underlying principles are therefore indispensable for applications like even smaller transistors, molecular machines and light-harvesting materials. Bringing together experiment and theory to enable applications in real-life devices, this handbook and ready reference provides essential information on how to control and direct charge transport. Readers can therefore obtain a balanced view of charge and exciton transport, covering characterization techniques such as spectroscopy and current measurements together with quantitative models. Researchers are thus able to improve the performance of newly developed devices, while an additional overview of synthesis methods highlights ways of producing different organic wires. Written with the following market in mind: chemists, molecular physicists, materials scientists and electrical engineers.

Book Modulation and Control of Charge Transport Through Single Molecule Junctions

Download or read book Modulation and Control of Charge Transport Through Single Molecule Junctions written by Kun Wang and published by . This book was released on 2016 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building electronic devices out of single molecules has been the ultimate goal of downscaling electric circuits. Understanding charge transport through single-molecule junctions is central to achieving this goal. To gain deeper insights into charge transport through single molecules, this dissertation centers on detailed experimental modulation and control of charge transport through single-molecule junctions using modified scanning probe microscope break-junction (SPM-BJ) techniques. First, I explored the effect of molecule-electrode contact interfaces. Using force-conductance cross-correlation analysis, I mapped out the correlation between conductance and force of modulated Au-octanedithiol-Au junctions measured with CAFM-BJ. The investigation of the conductance change during junction elongation showed a unique contact tunneling barrier of octanedithiol, which was interpreted by a newly developed contact barrier model. A systematic control of anchoring groups of benzene-based molecular junctions showed that current rectification occurred whenever asymmetric anchoring groups were introduced, which is mainly due to asymmetry in potential drop across the contacts. Second, I studied the impact of DNA's structural change on its conductance. The conductance of poly d(GC)4 DNA duplex was found to decrease by two orders of magnitude during a B- to Z-form structural transition, which is mainly attributed to the breaking of Ï0-Ï0 stacking between adjacent base pairs caused by the transition. Using stretch-hold mode STM-BJ technique, the structural transition was successfully monitored solely based on conductance measurements. Then, I attempted to modify the structure of DNA for functional I-V feature. A DNA-based molecular rectifier was for the first time constructed by site-specific intercalation of coralyne molecules into a custom-designed DNA duplex. Measured I-V curves of the resulting DNA-coralyne complex showed strong rectification with a rectification ratio of 15 at 1.1V. Based on NEGF-DFT calculations, this rectification is mainly caused by asymmetric coupling of the HOMO-1 level to the electrodes when an external bias is applied, an unprecedented rectification mechanism. Finally, Fermi level pinning of charge transfer resonances was investigated in junctions composed of terthiophene containing molecular wires. Taken together, these results not only provide new understanding of charge transport through molecules, they also opened new route for building functional molecular electronic devices.

Book Charge Transport in Molecular Junctions with Soft Contacts

Download or read book Charge Transport in Molecular Junctions with Soft Contacts written by Alexander Benjamin Neuhausen and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis describes a novel method to fabricate individually addressable molecular junctions of self-assembled monolayers (SAMs) and presents a series of molecular transport measurements taken with these devices. The results of these experiments are analyzed in terms of a general model applicable across a wide range of temperatures, biases and molecular species. The molecular junctions presented in this work exhibit the desired characteristics of nanoscale resolution, high yield and low device-to-device variation. Soft conductive polymer top contacts virtually eliminate shorts associated with diffusion of metal top contacts. We improve several features of previous soft contact devices and demonstrate an order of magnitude reduction in device area. We implement an inorganic dielectric layer with features defined by e-beam lithography and dry etching. We exchange the aqueous PEDOT:PSS conductive polymer used in prior devices for Aedotron P, a low-viscosity, amphiphilic polymer, allowing incorporation of self-assembled monolayers with either hydrophobic or hydrophilic termination with the same junction geometry and materials. We demonstrate the adaptability of this new design by presenting transport measurements on SAMs composed of alkanethiols with methyl, thiol, carboxyl, and azide terminations. We establish that the observed tunnel-barrier behavior is primarily a function of monolayer thickness, independent of the terminal group's hydrophilicity and present a model of the device conductivity as a product of several transmission coefficients. We investigate the temperature-dependence of transport, unique to polymer-contacted molecular junctions, and show that the behavior can be explained primarily as a function of transmission through the polymer layer. Finally, we study transport through mixed and homogenous monolayers of conjugated species, revealing the limits of Aedotron P as a contact material.

Book Charge Carrier Transport Measurements through Single Molecules

Download or read book Charge Carrier Transport Measurements through Single Molecules written by Emanuel Lörtscher and published by Cuvillier Verlag. This book was released on 2007-10-10 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this thesis was to establish and to characterize single-molecule junctions by means of the mechanically controllable break-junction (MCBJ) technique. Using this method, an electrode pair with atomic-sized tips can be created. These tips are located exactly opposite to each other and their distance can be adjusted with picometer accuracy. This technique was developed by Moreland et al. in 1985 and further improved by Muller et al. in the subsequent years to study quantum phenomena in superconductors. Mechanically controllable break-junctions are distinguished by an excellent stability of the two electrodes against external vibrations. The stability is achieved by a purely mechanical transaction in a three-point bending mechanism with a very low transmission ratio between the pushing-rod travel distance, and the electrode separation resulting there from (ratio of approximately 1 x 10-5). This lateral stability combined with a sub-atomic spatial electrode positioning accuracy allows single molecules to be contacted. In the framework of this thesis, an ultra-high vacuum system equipped with a MCBJ bending mechanism was designed, fabricated, characterized, and continuously improved. This experimental system can be used to establish a contact with a single molecule and to perform temperature-dependent investigations of its charge-carrier transport properties. The thermal coupling between the cryostat and the sample holder was improved in several ways to achieve a temperature range of 8 to 300 K. The bending mechanism of the break-junction was also modified considerably. For instance, additional supporting bolts and a proper head opposite to the pushing-rod ensure the back bending of the substrate should the bending force might have exceeded the elastic range of the metal (bending radii larger than 18 mm). As a result, the junction can be opened and closed several hundred times without any sign of fatigue. Moreover, a reliable electrical contact to the sample was implemented by means of spring-loaded contact pins. They provide a stable electrical connection between the measurement instrument and the sample, which is not influenced by the bending procedure. The MCBJ samples were fabricated using a combination of optical and electron-beam lithography. These fabrication techniques allow 1 μm short, between 75 nm and 120 nm narrow, free-standing bridges to be manufactured. As a result of this geometry, the dynamic range for the opening and closing of the junction is excellent. In the introductory experimental part, the metal-metal contacts as created via the MCBJ approach were characterized in terms of their mechanical and electrical properties. The attention was focussed especially on those investigations that are important for handling separated electrodes for contacting single molecules. The microscopic geometry of the electrode tips, their positioning accuracy, and the stability were found to be the essential parameters. Gold was used as an electrode material as it is very well suited because of its ductile response to deformation, therefore enabling the formation of atomic-sized tips. A relative distance calibration by means of tunnelling current measurements between the two electrodes revealed that the theoretical ratio between pushing-rod translation and the resulting electrode separation (2.1 x 10-5) corresponds very well to the experimentally measured value (1.8 x 10-5). The stability of the electrodes at fixed, low temperature (e.g., T = 30 K) is extraordinary. For instance, a constant tunneling resistance of (15 ±3) MΩ can be maintained over many minutes. This means that the distance between the separated electrodes varies only within 5 - 10 picometers. Upon further closing of the junction, it was found that the electrodes cannot be approached arbitrarily close to each other. A “jump-to-contact" to the conductance quantum G0 was observed for tunnelling resistances below 1 MΩ. The excellent stability between the electrodes changes fundamentally at higher temperatures (T > 150 K). Both resolution and the stability worsen at elevated temperatures, which is primarily due to the enhanced mobility of the gold atoms. In slow opening and closing cycles (velocity

Book Theoretical Analysis of the Conduction Properties of Self assembled Molecular Tunnel Junctions

Download or read book Theoretical Analysis of the Conduction Properties of Self assembled Molecular Tunnel Junctions written by Cameron Nickle and published by . This book was released on 2020 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the size scale of electrical devices approach the atomic scale. Moore’s law is predicted to be over for semiconductor devices. Studies into the replacement of semiconductor technology with organic devices was first predicted by Avriam and Ratner[1] in 1974. Since then significant research into molecular based organic devices has been conducted. The work presented in this dissertation explores the theoretical frameworks used to model transport through molecular junctions. We present studies which seek to garner a better understanding of the charge transport through molecular junctions and how the conduction properties can be optimized. We show that a single atom can change a molecule from an insulator to a conductor. We also study the effects of sigma and pi bridges on molecular rectification. We will then show molecular devices that act as viable electrical static and dynamic switches. The studies presented here help to demonstrate the viability of organic devices in the forms of rectifiers and switches with applications ranging from the replacement of traditional semiconductor devices to neuromorphic computing.

Book Charge Transport in Molecular Junctions

Download or read book Charge Transport in Molecular Junctions written by Michele Kotiuga and published by . This book was released on 2015 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here, we use and develop first-principles methods based on density functional theory (DFT) and beyond to understand and predict charge transport phenomena in the novel class of nanostructured devices: molecular junctions. Molecular junctions, individual molecules contacted to two metallic leads, which can be systematically altered by modifying the chemistry of each component, serve as test beds for the study of transport at the nanoscale. To date, various experimental methods have been designed to reliably assemble and mea- sure transport properties of molecular junctions. Furthermore, theoretical methods built on DFT designed to yield quantitative agreement with these experiments for certain classes of molecular junctions have been developed. In order to gain insight into a broader range of molecular junctions and environmental effects associated with the surrounding solution, this dissertation will employ, explore and extend first-principles DFT calculations coupled with approximate self-energy corrections known to yield quantitative agreement with experiments for certain classes of molecular junctions. To start we examine molecular junctions in which the molecule is strongly hybridized with the leads: a challenging limit for the existing methodology. Using a physically motivated tight-binding model, we find that the experimental trends observed for such molecules can be explained by the presence of a so-called "gateway" state associated with the chemical bond that bridges the molecule and the lead. We discuss the ingredients of a self-energy corrected DFT based approach to quantitatively predict conductance in the presence of these hybridization effects. We also develop and apply an approach to account for the surrounding environment on the conductance, which has been predominantly ignored in past transport calculations due to computational complexity. Many experiments are performed in a solution of non-conducting molecules; far from benign, this solution is known to impact the measured conductance by as much as a factor of two. Here, we show that the dominant effect of the solution stems from nearby molecules binding to the lead surface surrounding the junction and altering the local electrostatics. This effect operates in much the same way adsorbates alter the work function of a surface. We develop a framework which implicitly includes the surrounding molecules through an electrostatic-based lattice model with parameters from DFT calculations, reducing the computational complexity of this problem while retaining predictive power. Our approach for computing environmental effects on charge transport in such junctions will pave the way for a better understanding of the physics of nanoscale devices, which are known to be highly sensitive to their surroundings.

Book Environmental Control of Charge Transport Through Single Molecule Junctions

Download or read book Environmental Control of Charge Transport Through Single Molecule Junctions written by Brian John Capozzi and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This technique has the potential for application in nano-scale systems beyond single-molecule junctions. These results constitute another step toward the development of single-molecule devices with commercial applications. Finally, the methods presented in this thesis offer further insights into the electronic structure of molecular junctions. We show that we can assess energy-level alignment at metal molecule interfaces– this alignment is a crucial parameter controlling the proper- ties of the interface. We also demonstrate that we can probe large regions ( 2eV) of the transmission function which governs charge transport through the junction. By being able to control level alignment, we are also able to offer preliminary studies on single-molecule junctions in the resonant transport regime. Combined, the results presented in this thesis grant new insights into electron transport at the nanoscale and provide new routes for the development of functional single-molecule devices.

Book Contact and Length Dependent Effects in Single molecule Electronics

Download or read book Contact and Length Dependent Effects in Single molecule Electronics written by Thomas Hines and published by . This book was released on 2013 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding charge transport in single molecules covalently bonded to electrodes is a fundamental goal in the field of molecular electronics. In the past decade, it has become possible to measure charge transport on the single-molecule level using the STM break junction method. Measurements on the single-molecule level shed light on charge transport phenomena which would otherwise be obfuscated by ensemble measurements of groups of molecules. This thesis will discuss three projects carried out using STM break junction. In the first project, the transition between two different charge transport mechanisms is reported in a set of molecular wires. The shortest wires show highly length dependent and temperature invariant conductance behavior, whereas the longer wires show weakly length dependent and temperature dependent behavior. This trend is consistent with a model whereby conduction occurs by coherent tunneling in the shortest wires and by incoherent hopping in the longer wires. Measurements are supported with calculations and the evolution of the molecular junction during the pulling process is investigated. The second project reports controlling the formation of single-molecule junctions by means of electrochemically reducing two axial-diazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in-situ between the molecule and gold electrodes. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond. Finally, the third project investigates the role that molecular conformation plays in the conductance of oligothiophene single-molecule junctions. Ethyl substituted oligothiophenes were measured and found to exhibit temperature dependent conductance and transition voltage for molecules with between two and six repeat units. While the molecule with only one repeat unit shows temperature invariant behavior. Density functional theory calculations show that at higher temperatures the oligomers with multiple repeat units assume a more planar conformation, which increases the conjugation length and decreases the effective energy barrier of the junction.

Book Charge Transport in Single Molecule Junctions

Download or read book Charge Transport in Single Molecule Junctions written by Claudia Benesch and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Materials Modeling

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Book Polyoxometalate Chemistry

Download or read book Polyoxometalate Chemistry written by and published by Academic Press. This book was released on 2017-02-17 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polyoxometalate Chemistry continues a long-running series that describes recent advances in scientific research, in particular, in the field of inorganic chemistry. Several highly regarded experts, mostly from academia, contribute on specific topics. The current issue focuses on recent advances in the development and application of polyoxometalate complexes in areas such as solution chemistry, self-organization, solar fuels, non-aqueous chemistry, spintronics, nanoscience and catalysis. Presents a single monograph on recent developments in polyoxometalate chemistry as written by scientific leaders in this field Concise and informative presentations cover a wide range of topics in this field of chemistry Contains detailed literature references, enabling the reader to move on to the source of the reported work where more details can be found Provides a solid presentation of a hard-cover book of excellent technical quality

Book Atomic and Molecular Wires

Download or read book Atomic and Molecular Wires written by C. Joachim and published by Springer Science & Business Media. This book was released on 1997-07-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the NATO Advanced Research Workshop on "Atomic and Molecular Wires". It was sponsored by the Ministry of Scientific Affairs Division special program on Nanoscale Science with the support of the CNRS and the Max Planck Institute. Scientists working or interested in the properties of wires at a subnanoscale were brought together in Les Houches (France) from 6 to 10 May 1996. Subnanoscale wires can be fabricated either by surface physicists (atomic wires) or by synthetic chemists (molecular wires). Both communities present their foremost advances using, for example, STM to assemble atomic lines atom for atom, to fabricate a mask for such a line or using the wide range of chemical synthesis techniques to obtain long, rigid and conjugated oligomers. Interconnecting such tiny wires to sources (voltage, current) continues to demand a great technological effort. But nanolithography associated with microfabrication or STM are now clearly identified paths for measuring the electrical resistance of an atomic or a molecular wire. The first measurements have been reported on Xe , benzene, C ' di(phenylene-ethynylene) showing 2 60 the need for a deeper understanding of transport phenomena through subnanowires. Such transport phenomena like tunnel (off-resonance) transport and Coulomb blockade have been discussed by theorists with an emphasis on the exponential decrease of the tunnel current with the wire length versus the ballistic regime of transport.

Book Molecular Biology of The Cell

Download or read book Molecular Biology of The Cell written by Bruce Alberts and published by . This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Scale Electronics

Download or read book Molecular Scale Electronics written by Xuefeng Guo and published by Springer. This book was released on 2018-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.

Book Molecular Electronics

    Book Details:
  • Author : Juan Carlos Cuevas
  • Publisher : World Scientific
  • Release : 2010
  • ISBN : 9814282588
  • Pages : 724 pages

Download or read book Molecular Electronics written by Juan Carlos Cuevas and published by World Scientific. This book was released on 2010 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.

Book Controlling the Quantum World

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 2007-06-21
  • ISBN : 0309102707
  • Pages : 245 pages

Download or read book Controlling the Quantum World written by National Research Council and published by National Academies Press. This book was released on 2007-06-21 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.