Download or read book Singular Integral Equations written by N. I. Muskhelishvili and published by Courier Corporation. This book was released on 2013-02-19 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div
Download or read book Singular Integral Equations written by Ricardo Estrada and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical problems that are usually solved by differential equation techniques can be solved more effectively by integral equation methods. This work focuses exclusively on singular integral equations and on the distributional solutions of these equations. A large number of beautiful mathematical concepts are required to find such solutions, which in tum, can be applied to a wide variety of scientific fields - potential theory, me chanics, fluid dynamics, scattering of acoustic, electromagnetic and earth quake waves, statistics, and population dynamics, to cite just several. An integral equation is said to be singular if the kernel is singular within the range of integration, or if one or both limits of integration are infinite. The singular integral equations that we have studied extensively in this book are of the following type. In these equations f (x) is a given function and g(y) is the unknown function. 1. The Abel equation x x) = l g (y) d 0
Download or read book Applied Singular Integral Equations written by B. N. Mandal and published by CRC Press. This book was released on 2016-04-19 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to varieties of linear singular integral equations, with special emphasis on their methods of solution. It introduces the singular integral equations and their applications to researchers as well as graduate students of this fascinating and growing branch of applied mathematics.
Download or read book Singular Integral Equations written by E.G. Ladopoulos and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book deals with the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations, which are currently used in many fields of engineering mechanics with applied character, like elasticity, plasticity, thermoelastoplasticity, viscoelasticity, viscoplasticity, fracture mechanics, structural analysis, fluid mechanics, aerodynamics and elastodynamics. These types of singular integral equations form the latest high technology on the solution of very important problems of solid and fluid mechanics and therefore special attention should be given by the reader of the present book, who is interested for the new technology of the twentieth-one century. Chapter 1 is devoted with a historical report and an extended outline of References, for the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations. Chapter 2 provides a finite-part singular integral representation analysis in Lp spaces and in general Hilbert spaces. In the same Chapter are investigated all possible approximation methods for the numerical evaluation of the finite-part singular integral equations, as closed form solutions for the above type of integral equations are available only in simple cases. Also, Chapter 2 provides further a generalization of the well known Sokhotski-Plemelj formulae and the Nother theorems, for the case of a finite-part singular integral equation.
Download or read book Multidimensional Singular Integrals and Integral Equations written by S. G. Mikhlin and published by Elsevier. This book was released on 2014-07-10 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multidimensional Singular Integrals and Integral Equations presents the results of the theory of multidimensional singular integrals and of equations containing such integrals. Emphasis is on singular integrals taken over Euclidean space or in the closed manifold of Liapounov and equations containing such integrals. This volume is comprised of eight chapters and begins with an overview of some theorems on linear equations in Banach spaces, followed by a discussion on the simplest properties of multidimensional singular integrals. Subsequent chapters deal with compounding of singular integrals; properties of the symbol, with particular reference to Fourier transform of a kernel and the symbol of a singular operator; singular integrals in Lp spaces; and singular integral equations. The differentiation of integrals with a weak singularity is also considered, along with the rule for the multiplication of the symbols in the general case. The final chapter describes several applications of multidimensional singular integral equations to boundary problems in mathematical physics. This book will be of interest to mathematicians and students of mathematics.
Download or read book Multidimensional Weakly Singular Integral Equations written by Gennadi Vainikko and published by Springer. This book was released on 2006-11-15 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: The final aim of the book is to construct effective discretization methods to solve multidimensional weakly singular integral equations of the second kind on a region of Rn e.g. equations arising in the radiation transfer theory. To this end, the smoothness of the solution is examined proposing sharp estimates of the growth of the derivatives of the solution near the boundary G. The superconvergence effect of collocation methods at the collocation points is established. This is a book for graduate students and researchers in the fields of analysis, integral equations, mathematical physics and numerical methods. No special knowledge beyond standard undergraduate courses is assumed.
Download or read book Singular Differential and Integral Equations with Applications written by R.P. Agarwal and published by Springer Science & Business Media. This book was released on 2003-07-31 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last century many problems which arose in the science, engineer ing and technology literature involved nonlinear complex phenomena. In many situations these natural phenomena give rise to (i). ordinary differ ential equations which are singular in the independent and/or dependent variables together with initial and boundary conditions, and (ii). Volterra and Fredholm type integral equations. As one might expect general exis tence results were difficult to establish for the problems which arose. Indeed until the early 1990's only very special examples were examined and these examples were usually tackled using some special device, which was usually only applicable to the particular problem under investigation. However in the 1990's new results in inequality and fixed point theory were used to present a very general existence theory for singular problems. This mono graph presents an up to date account of the literature on singular problems. One of our aims also is to present recent theory on singular differential and integral equations to a new and wider audience. The book presents a compact, thorough, and self-contained account for singular problems. An important feature of this book is that we illustrate how easily the theory can be applied to discuss many real world examples of current interest. In Chapter 1 we study differential equations which are singular in the independent variable. We begin with some standard notation in Section 1. 2 and introduce LP-Caratheodory functions. Some fixed point theorems, the Arzela- Ascoli theorem and Banach's theorem are also stated here.
Download or read book Wavelet Based Approximation Schemes for Singular Integral Equations written by Madan Mohan Panja and published by CRC Press. This book was released on 2020-06-07 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.
Download or read book Methods of Analysis and Solutions of Crack Problems written by George C. Sih and published by Springer Science & Business Media. This book was released on 1973-01-31 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.
Download or read book Hypersingular Integral Equations and Their Applications written by I.K. Lifanov and published by CRC Press. This book was released on 2003-12-29 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: A number of new methods for solving singular and hypersingular integral equations have emerged in recent years. This volume presents some of these new methods along with classical exact, approximate, and numerical methods. The authors explore the analysis of hypersingular integral equations based on the theory of pseudodifferential operators and co
Download or read book Linear and Nonlinear Integral Equations written by Abdul-Majid Wazwaz and published by Springer Science & Business Media. This book was released on 2011-11-24 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.
Download or read book Fractional Integrals and Potentials written by Boris Rubin and published by CRC Press. This book was released on 1996-06-24 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents recent developments in the fractional calculus of functions of one and several real variables, and shows the relation of this field to a variety of areas in pure and applied mathematics. Beyond some basic properties of fractional integrals in one and many dimensions, it contains a mathematical theory of certain important weakly singular integral equations of the first kind arising in mechanics, diffraction theory and other areas of mathematical physics. The author focuses on explicit inversion formulae that can be obtained by making use of the classical Marchaudís approach and its generalization, leading to wavelet type representations.
Download or read book Integral Equation Methods in Scattering Theory written by David Colton and published by SIAM. This book was released on 2013-11-15 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.
Download or read book Integral Equations A Practical Treatment from Spectral Theory to Applications written by David Porter and published by Cambridge University Press. This book was released on 1990-09-28 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a rigorous and practical treatment of integral equations. These are significant because they occur in many problems in mathematics, physics and engineering and they offer a powerful (sometimes the only) technique for solving these problems. The book aims to tackle the solution of integral equations using a blend of abstract 'structural' results and more direct, down-to-earth mathematics. The interplay between these two approaches is a central feature of the text and it allows a thorough account to be given of many of the types of integral equation which arise in application areas. Since it is not always possible to find explicit solutions of the problems posed, much attention is devoted to obtaining qualitative information and approximations to the solutions, with the associated error estimates. This treatment is intended for final year mathematics undergraduates, postgraduates and research workers in application areas such as numerical analysis and fluid mechanics.
Download or read book Integral Equations written by F. G. Tricomi and published by Courier Corporation. This book was released on 2012-04-27 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authoritative, well-written treatment of extremely useful mathematical tool with wide applications. Topics include Volterra Equations, Fredholm Equations, Symmetric Kernels and Orthogonal Systems of Functions, more. Advanced undergraduate to graduate level. Exercises. Bibliography.
Download or read book Linear Integral Equations written by Ram P. Kanwal and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of Linear Integral Equations continues the emphasis that the first edition placed on applications. Indeed, many more examples have been added throughout the text. Significant new material has been added in Chapters 6 and 8. For instance, in Chapter 8 we have included the solutions of the Cauchy type integral equations on the real line. Also, there is a section on integral equations with a logarithmic kernel. The bibliography at the end of the book has been exteded and brought up to date. I wish to thank Professor B.K. Sachdeva who has checked the revised man uscript and has suggested many improvements. Last but not least, I am grateful to the editor and staff of Birkhauser for inviting me to prepare this new edition and for their support in preparing it for publication. RamP Kanwal CHAYfERl Introduction 1.1. Definition An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well. For example, for a ~ s ~ b; a :( t :( b, the equations (1.1.1) f(s) = ib K(s, t)g(t)dt, g(s) = f(s) + ib K(s, t)g(t)dt, (1.1.2) g(s) = ib K(s, t)[g(t)fdt, (1.1.3) where the function g(s) is the unknown function and all the other functions are known, are integral equations. These functions may be complex-valued functions of the real variables s and t.
Download or read book Boundary Value Problems written by F. D. Gakhov and published by Elsevier. This book was released on 2014-07-10 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary Value Problems is a translation from the Russian of lectures given at Kazan and Rostov Universities, dealing with the theory of boundary value problems for analytic functions. The emphasis of the book is on the solution of singular integral equations with Cauchy and Hilbert kernels. Although the book treats the theory of boundary value problems, emphasis is on linear problems with one unknown function. The definition of the Cauchy type integral, examples, limiting values, behavior, and its principal value are explained. The Riemann boundary value problem is emphasized in considering the theory of boundary value problems of analytic functions. The book then analyzes the application of the Riemann boundary value problem as applied to singular integral equations with Cauchy kernel. A second fundamental boundary value problem of analytic functions is the Hilbert problem with a Hilbert kernel; the application of the Hilbert problem is also evaluated. The use of Sokhotski's formulas for certain integral analysis is explained and equations with logarithmic kernels and kernels with a weak power singularity are solved. The chapters in the book all end with some historical briefs, to give a background of the problem(s) discussed. The book will be very valuable to mathematicians, students, and professors in advanced mathematics and geometrical functions.